Solveeit Logo

Question

Question: 2 identical beams A and B of plane coherent waves of same intensity and wavelength 6 x 10^-7m fall o...

2 identical beams A and B of plane coherent waves of same intensity and wavelength 6 x 10^-7m fall on a plane screen. the direction of beam propagation makes 37 deg and 53 deg respectively with normal and lie in same plane. find distance between adjacent. interference fringes

Answer

Approx. 3.05×1063.05 \times 10^{-6} m

Explanation

Solution

The path difference at a point xx on the screen is due to the different projections of xx along the directions of the two beams. If beam A makes an angle θA=37\theta_A=37^\circ and beam B makes θB=53\theta_B=53^\circ with the normal, the phase difference is given by:

Δϕ=kx(sinθBsinθA),where k=2πλ.\Delta \phi = kx \left(\sin\theta_B - \sin\theta_A\right), \quad \text{where } k=\frac{2\pi}{\lambda}.

For constructive interference (bright fringes), we need:

kx(sinθBsinθA)=2πm.kx \left(\sin\theta_B-\sin\theta_A\right)=2\pi m.

The fringe spacing Δx\Delta x (distance between adjacent bright fringes) is:

kΔx(sinθBsinθA)=2πΔx=2πk(sinθBsinθA)=λsinθBsinθA.k\,\Delta x \left(\sin\theta_B-\sin\theta_A\right)=2\pi \quad \Rightarrow \quad \Delta x = \frac{2\pi}{k\left(\sin\theta_B-\sin\theta_A\right)} = \frac{\lambda}{\sin\theta_B-\sin\theta_A}.

Given:

λ=6×107m,\lambda = 6 \times 10^{-7}\, \text{m}, sin530.7986,sin370.6018.\sin 53^\circ \approx 0.7986,\quad \sin 37^\circ \approx 0.6018.

Thus,

sinθBsinθA0.79860.6018=0.1968.\sin\theta_B-\sin\theta_A \approx 0.7986 - 0.6018 = 0.1968. Δx6×1070.19683.05×106m.\Delta x \approx \frac{6 \times 10^{-7}}{0.1968} \approx 3.05 \times 10^{-6}\,\text{m}.

Core Explanation:

  • Fringe spacing is given by Δx=λsin53sin37\Delta x=\frac{\lambda}{\sin53^\circ-\sin37^\circ}.
  • Substitute λ=6×107m\lambda=6\times10^{-7}\,\text{m}, using sin530.7986\sin53^\circ\approx 0.7986 and sin370.6018\sin37^\circ\approx 0.6018.
  • Compute Δx3.05×106m\Delta x\approx3.05\times10^{-6}\,\text{m}.