Question
Question: Given $a+b+c=2$, $a,b,c \in R^+$. Find minimum value of $\frac{1}{a} + \frac{4}{b} + \frac{36}{c}$....
Given a+b+c=2, a,b,c∈R+. Find minimum value of a1+b4+c36.

Answer
281
Explanation
Solution
Apply Cauchy-Schwarz inequality in Engel form: ∑xiyi2≥∑xi(∑yi)2. With y1=1,y2=2,y3=6 and x1=a,x2=b,x3=c. The expression is a12+b22+c62≥a+b+c(1+2+6)2. Using the constraint a+b+c=2, the minimum value is 292=281.
