Solveeit Logo

Question

Question: Given $a+b+c=2$, $a,b,c \in R^+$. Find minimum value of $\frac{1}{a} + \frac{4}{b} + \frac{36}{c}$....

Given a+b+c=2a+b+c=2, a,b,cR+a,b,c \in R^+. Find minimum value of 1a+4b+36c\frac{1}{a} + \frac{4}{b} + \frac{36}{c}.

Answer

812\frac{81}{2}

Explanation

Solution

Apply Cauchy-Schwarz inequality in Engel form: yi2xi(yi)2xi\sum \frac{y_i^2}{x_i} \ge \frac{(\sum y_i)^2}{\sum x_i}. With y1=1,y2=2,y3=6y_1=1, y_2=2, y_3=6 and x1=a,x2=b,x3=cx_1=a, x_2=b, x_3=c. The expression is 12a+22b+62c(1+2+6)2a+b+c\frac{1^2}{a} + \frac{2^2}{b} + \frac{6^2}{c} \ge \frac{(1+2+6)^2}{a+b+c}. Using the constraint a+b+c=2a+b+c=2, the minimum value is 922=812\frac{9^2}{2} = \frac{81}{2}.