Solveeit Logo

Question

Chemistry Question on Solutions

2g2 \,g of benzoic acid (C6H6COOH)(C_6H_6COOH) is dissolved in 25g25\, g of benzene. The observed molar mass of benzoic acid is found to be 241.98241.98 . What is the percentage association of acid if it forms in solution?

A

85.2%85.2\%

B

89.2%89.2\%

C

95.2%95.2\%

D

99.2%99.2\%

Answer

99.2%99.2\%

Explanation

Solution

Given WAW_A, benzoic acid =2g= 2 \,g
WBW_B, Benzene =25g= 25 \,g
Kf=4.9Kkgmol1K_f = 4.9 \,K \,kg\, mol^{-1}
Tf=1.62KT_f = 1.62 \,K
MB=241.98M_B =241.98
2C6H5COOH<=>(C6H5COOH)22C_6H_5COOH {<=>} (C_6H_5COOH)_2
Let, x=x = degree of association of solute
(1x)=\therefore (1 - x) = moles of benzene left in unassociated form
x2=\frac{x}{2}= moles of benzoic acid in equilibrium
Total number of moles at equilibrium =1x+x2= 1 - x + \frac{x}{2}
van,t Hoff factor, i=1x2 i = 1 - \frac{x}{2}
i=Total number of moles of particles after association Number of moles of particle before associationi = \frac{\text{Total number of moles of particles after association }}{\text{Number of moles of particle before association}}
i=122gmol241.98gmoli = \frac{122\,g\,mol}{241.98\,g\,mol}
or, 1x2=122241.98 1 - \frac{x}{2} = \frac{122}{241.98}
x2=1122241.98\therefore \frac{x}{2} = 1 - \frac{122}{241.98}
x2=0.49\frac{x}{2} = 0.49
x=2×0.49x = 2\times 0.49
x=0.9916x = 0.9916
\therefore The degree of association of benzoic acid in benzene is 99.2%99.2\%.