Solveeit Logo

Question

Question: 2. (ⅰ) $\frac{x-1}{x+1} \geq 0$ (ii) $\frac{x-2}{x+2} \geq 0$ (iii) $\frac{x-1}{x+1} \geq 1$ (iv) $\...

(ⅰ) x1x+10\frac{x-1}{x+1} \geq 0 (ii) x2x+20\frac{x-2}{x+2} \geq 0 (iii) x1x+11\frac{x-1}{x+1} \geq 1 (iv) x2x+5>2\frac{x-2}{x+5} > 2 (v) 2x352x-3 \leq 5, 2x+5x+73\frac{2x+5}{x+7} \geq 3 (vi) 2x+17x1>5\frac{2x+1}{7x-1} > 5, x+7x8>2\frac{x+7}{x-8} > 2 (vii) 52x3x65\frac{5-2x}{3} \leq \frac{x}{6} - 5 (viii) x+7x4>2\frac{x+7}{x-4} > 2, 2x+1x2>3\frac{2x+1}{x-2} > 3 (ix) 12(35x+4)>13(x6)\frac{1}{2}(\frac{3}{5}x+4) > \frac{1}{3}(x-6) (x) 23x5<1x3<3+4x2\frac{2-3x}{5} < \frac{1-x}{3} < \frac{3+4x}{2} (xi) x+5>2(x+1)x + 5 > 2(x + 1), 2x<3(x+2)2 - x < 3(x + 2). (xii) 2(x6)<3x72(x - 6) < 3x - 7, 112x<6x11 - 2x < 6 - x. (xiii) 2x41+x3-2 - \frac{x}{4} \leq \frac{1+x}{3}, 3x<4(x3)3 - x < 4(x - 3)

Answer

(i) x(,1)[1,)x \in (-\infty, -1) \cup [1, \infty) (ii) x(,2)[2,)x \in (-\infty, -2) \cup [2, \infty) (iii) x(,1)x \in (-\infty, -1) (iv) x(12,5)x \in (-12, -5) (v) x[16,7)x \in [-16, -7) (vi) No solution (\emptyset) (vii) x[8,)x \in [8, \infty) (viii) x(4,7)x \in (4, 7) (ix) x(,120)x \in (-\infty, 120) (x) x(1/4,)x \in (1/4, \infty) (xi) x(1,3)x \in (-1, 3) (xii) x(5,)x \in (5, \infty) (xiii) x(3,)x \in (3, \infty)

Explanation

Solution

Here are the solutions for each inequality:

(i) x1x+10\frac{x-1}{x+1} \geq 0

Critical points are x=1x=1 (from numerator) and x=1x=-1 (from denominator). We test intervals:

  • For x<1x < -1 (e.g., x=2x=-2): 212+1=31=30\frac{-2-1}{-2+1} = \frac{-3}{-1} = 3 \geq 0. (True)
  • For 1<x<1-1 < x < 1 (e.g., x=0x=0): 010+1=11=1<0\frac{0-1}{0+1} = \frac{-1}{1} = -1 < 0. (False)
  • For x1x \geq 1 (e.g., x=2x=2): 212+1=130\frac{2-1}{2+1} = \frac{1}{3} \geq 0. (True)

Since the denominator cannot be zero, x1x \neq -1. Solution: x(,1)[1,)x \in (-\infty, -1) \cup [1, \infty)

(ii) x2x+20\frac{x-2}{x+2} \geq 0

Critical points are x=2x=2 and x=2x=-2. We test intervals:

  • For x<2x < -2 (e.g., x=3x=-3): 323+2=51=50\frac{-3-2}{-3+2} = \frac{-5}{-1} = 5 \geq 0. (True)
  • For 2<x<2-2 < x < 2 (e.g., x=0x=0): 020+2=22=1<0\frac{0-2}{0+2} = \frac{-2}{2} = -1 < 0. (False)
  • For x2x \geq 2 (e.g., x=3x=3): 323+2=150\frac{3-2}{3+2} = \frac{1}{5} \geq 0. (True)

Since x2x \neq -2. Solution: x(,2)[2,)x \in (-\infty, -2) \cup [2, \infty)

(iii) x1x+11\frac{x-1}{x+1} \geq 1

x1x+110\frac{x-1}{x+1} - 1 \geq 0 x1(x+1)x+10\frac{x-1-(x+1)}{x+1} \geq 0 2x+10\frac{-2}{x+1} \geq 0

For this inequality to hold, the denominator x+1x+1 must be negative (since the numerator is negative and fixed at -2). x+1<0    x<1x+1 < 0 \implies x < -1. Solution: x(,1)x \in (-\infty, -1)

(iv) x2x+5>2\frac{x-2}{x+5} > 2

x2x+52>0\frac{x-2}{x+5} - 2 > 0 x22(x+5)x+5>0\frac{x-2-2(x+5)}{x+5} > 0 x22x10x+5>0\frac{x-2-2x-10}{x+5} > 0 x12x+5>0\frac{-x-12}{x+5} > 0

Multiply by -1 and reverse the inequality sign: x+12x+5<0\frac{x+12}{x+5} < 0

Critical points are x=12x=-12 and x=5x=-5. We test intervals:

  • For x<12x < -12 (e.g., x=13x=-13): 13+1213+5=18=180\frac{-13+12}{-13+5} = \frac{-1}{-8} = \frac{1}{8} \not< 0. (False)
  • For 12<x<5-12 < x < -5 (e.g., x=10x=-10): 10+1210+5=25=25<0\frac{-10+12}{-10+5} = \frac{2}{-5} = -\frac{2}{5} < 0. (True)
  • For x>5x > -5 (e.g., x=0x=0): 0+120+5=1250\frac{0+12}{0+5} = \frac{12}{5} \not< 0. (False)

Solution: x(12,5)x \in (-12, -5)

(v) 2x352x-3 \leq 5 and 2x+5x+73\frac{2x+5}{x+7} \geq 3

Inequality 1: 2x352x-3 \leq 5 2x8    x42x \leq 8 \implies x \leq 4. Solution 1: (,4](-\infty, 4]

Inequality 2: 2x+5x+73\frac{2x+5}{x+7} \geq 3 2x+5x+730\frac{2x+5}{x+7} - 3 \geq 0 2x+53(x+7)x+70\frac{2x+5-3(x+7)}{x+7} \geq 0 2x+53x21x+70\frac{2x+5-3x-21}{x+7} \geq 0 x16x+70\frac{-x-16}{x+7} \geq 0

Multiply by -1 and reverse the inequality sign: x+16x+70\frac{x+16}{x+7} \leq 0

Critical points are x=16x=-16 and x=7x=-7. We test intervals:

  • For x16x \leq -16 (e.g., x=20x=-20): 20+1620+7=413=413≰0\frac{-20+16}{-20+7} = \frac{-4}{-13} = \frac{4}{13} \not\leq 0. (False)
  • For 16x<7-16 \leq x < -7 (e.g., x=10x=-10): 10+1610+7=63=20\frac{-10+16}{-10+7} = \frac{6}{-3} = -2 \leq 0. (True)
  • For x>7x > -7 (e.g., x=0x=0): 0+160+7=167≰0\frac{0+16}{0+7} = \frac{16}{7} \not\leq 0. (False)

Solution 2: [16,7)[-16, -7)

Intersection of Solution 1 and Solution 2: (,4][16,7)=[16,7)(-\infty, 4] \cap [-16, -7) = [-16, -7). Solution: x[16,7)x \in [-16, -7)

(vi) 2x+17x1>5\frac{2x+1}{7x-1} > 5 and x+7x8>2\frac{x+7}{x-8} > 2

Inequality 1: 2x+17x1>5\frac{2x+1}{7x-1} > 5 2x+17x15>0\frac{2x+1}{7x-1} - 5 > 0 2x+15(7x1)7x1>0\frac{2x+1-5(7x-1)}{7x-1} > 0 2x+135x+57x1>0\frac{2x+1-35x+5}{7x-1} > 0 33x+67x1>0\frac{-33x+6}{7x-1} > 0

Multiply by -1/3 and reverse the inequality sign: 11x27x1<0\frac{11x-2}{7x-1} < 0

Critical points are x=2/11x=2/11 and x=1/7x=1/7. Since 1/70.141/7 \approx 0.14 and 2/110.182/11 \approx 0.18, 1/7<2/111/7 < 2/11. We test intervals:

  • For x<1/7x < 1/7 (e.g., x=0x=0): 21=20\frac{-2}{-1} = 2 \not< 0. (False)
  • For 1/7<x<2/111/7 < x < 2/11 (e.g., x=0.15x=0.15): 11(0.15)27(0.15)1=1.6521.051=0.350.05=7<0\frac{11(0.15)-2}{7(0.15)-1} = \frac{1.65-2}{1.05-1} = \frac{-0.35}{0.05} = -7 < 0. (True)
  • For x>2/11x > 2/11 (e.g., x=1x=1): 11271=96=1.50\frac{11-2}{7-1} = \frac{9}{6} = 1.5 \not< 0. (False)

Solution 1: (1/7,2/11)(1/7, 2/11)

Inequality 2: x+7x8>2\frac{x+7}{x-8} > 2 x+7x82>0\frac{x+7}{x-8} - 2 > 0 x+72(x8)x8>0\frac{x+7-2(x-8)}{x-8} > 0 x+72x+16x8>0\frac{x+7-2x+16}{x-8} > 0 x+23x8>0\frac{-x+23}{x-8} > 0

Multiply by -1 and reverse the inequality sign: x23x8<0\frac{x-23}{x-8} < 0

Critical points are x=23x=23 and x=8x=8. We test intervals:

  • For x<8x < 8 (e.g., x=0x=0): 238=2380\frac{-23}{-8} = \frac{23}{8} \not< 0. (False)
  • For 8<x<238 < x < 23 (e.g., x=10x=10): 1023108=132=6.5<0\frac{10-23}{10-8} = \frac{-13}{2} = -6.5 < 0. (True)
  • For x>23x > 23 (e.g., x=24x=24): 2423248=1160\frac{24-23}{24-8} = \frac{1}{16} \not< 0. (False)

Solution 2: (8,23)(8, 23)

Intersection of Solution 1 and Solution 2: (1/7,2/11)(8,23)(1/7, 2/11) \cap (8, 23). Since 2/110.182/11 \approx 0.18 and 88, there is no overlap. Solution: \emptyset (No solution)

(vii) 52x3x65\frac{5-2x}{3} \leq \frac{x}{6} - 5

Multiply by the LCM of 3 and 6, which is 6: 652x36(x65)6 \cdot \frac{5-2x}{3} \leq 6 \cdot (\frac{x}{6} - 5) 2(52x)x302(5-2x) \leq x - 30 104xx3010 - 4x \leq x - 30 10+30x+4x10 + 30 \leq x + 4x 405x40 \leq 5x x405x \geq \frac{40}{5} x8x \geq 8 Solution: x[8,)x \in [8, \infty)

(viii) x+7x4>2\frac{x+7}{x-4} > 2 and 2x+1x2>3\frac{2x+1}{x-2} > 3

Inequality 1: x+7x4>2\frac{x+7}{x-4} > 2 x+7x42>0\frac{x+7}{x-4} - 2 > 0 x+72(x4)x4>0\frac{x+7-2(x-4)}{x-4} > 0 x+72x+8x4>0\frac{x+7-2x+8}{x-4} > 0 x+15x4>0\frac{-x+15}{x-4} > 0

Multiply by -1 and reverse the inequality sign: x15x4<0\frac{x-15}{x-4} < 0

Critical points are x=15x=15 and x=4x=4. We test intervals:

  • For x<4x < 4 (e.g., x=0x=0): 154=1540\frac{-15}{-4} = \frac{15}{4} \not< 0. (False)
  • For 4<x<154 < x < 15 (e.g., x=5x=5): 51554=101=10<0\frac{5-15}{5-4} = \frac{-10}{1} = -10 < 0. (True)
  • For x>15x > 15 (e.g., x=20x=20): 2015204=5160\frac{20-15}{20-4} = \frac{5}{16} \not< 0. (False)

Solution 1: (4,15)(4, 15)

Inequality 2: 2x+1x2>3\frac{2x+1}{x-2} > 3 2x+1x23>0\frac{2x+1}{x-2} - 3 > 0 2x+13(x2)x2>0\frac{2x+1-3(x-2)}{x-2} > 0 2x+13x+6x2>0\frac{2x+1-3x+6}{x-2} > 0 x+7x2>0\frac{-x+7}{x-2} > 0

Multiply by -1 and reverse the inequality sign: x7x2<0\frac{x-7}{x-2} < 0

Critical points are x=7x=7 and x=2x=2. We test intervals:

  • For x<2x < 2 (e.g., x=0x=0): 72=720\frac{-7}{-2} = \frac{7}{2} \not< 0. (False)
  • For 2<x<72 < x < 7 (e.g., x=3x=3): 3732=41=4<0\frac{3-7}{3-2} = \frac{-4}{1} = -4 < 0. (True)
  • For x>7x > 7 (e.g., x=8x=8): 8782=160\frac{8-7}{8-2} = \frac{1}{6} \not< 0. (False)

Solution 2: (2,7)(2, 7)

Intersection of Solution 1 and Solution 2: (4,15)(2,7)=(4,7)(4, 15) \cap (2, 7) = (4, 7). Solution: x(4,7)x \in (4, 7)

(ix) 12(35x+4)>13(x6)\frac{1}{2}(\frac{3}{5}x+4) > \frac{1}{3}(x-6) 310x+2>13x2\frac{3}{10}x + 2 > \frac{1}{3}x - 2 2+2>13x310x2+2 > \frac{1}{3}x - \frac{3}{10}x 4>(10930)x4 > (\frac{10-9}{30})x 4>130x4 > \frac{1}{30}x

Multiply by 30: 120>x120 > x Solution: x(,120)x \in (-\infty, 120)

(x) 23x5<1x3<3+4x2\frac{2-3x}{5} < \frac{1-x}{3} < \frac{3+4x}{2}

This is a system of two inequalities: Inequality 1: 23x5<1x3\frac{2-3x}{5} < \frac{1-x}{3} Multiply by 15: 3(23x)<5(1x)3(2-3x) < 5(1-x) 69x<55x6-9x < 5-5x 65<5x+9x6-5 < -5x+9x 1<4x1 < 4x x>14x > \frac{1}{4} Solution 1: (1/4,)(1/4, \infty)

Inequality 2: 1x3<3+4x2\frac{1-x}{3} < \frac{3+4x}{2} Multiply by 6: 2(1x)<3(3+4x)2(1-x) < 3(3+4x) 22x<9+12x2-2x < 9+12x 29<12x+2x2-9 < 12x+2x 7<14x-7 < 14x x>714x > \frac{-7}{14} x>12x > -\frac{1}{2} Solution 2: (1/2,)(-1/2, \infty)

Intersection of Solution 1 and Solution 2: (1/4,)(1/2,)=(1/4,)(1/4, \infty) \cap (-1/2, \infty) = (1/4, \infty). Solution: x(1/4,)x \in (1/4, \infty)

(xi) x+5>2(x+1)x + 5 > 2(x + 1) and 2x<3(x+2)2 - x < 3(x + 2)

Inequality 1: x+5>2(x+1)x + 5 > 2(x + 1) x+5>2x+2x + 5 > 2x + 2 52>2xx5 - 2 > 2x - x 3>x3 > x Solution 1: (,3)(-\infty, 3)

Inequality 2: 2x<3(x+2)2 - x < 3(x + 2) 2x<3x+62 - x < 3x + 6 26<3x+x2 - 6 < 3x + x 4<4x-4 < 4x x>1x > -1 Solution 2: (1,)(-1, \infty)

Intersection of Solution 1 and Solution 2: (,3)(1,)=(1,3)(-\infty, 3) \cap (-1, \infty) = (-1, 3). Solution: x(1,3)x \in (-1, 3)

(xii) 2(x6)<3x72(x - 6) < 3x - 7 and 112x<6x11 - 2x < 6 - x

Inequality 1: 2(x6)<3x72(x - 6) < 3x - 7 2x12<3x72x - 12 < 3x - 7 12+7<3x2x-12 + 7 < 3x - 2x 5<x-5 < x Solution 1: (5,)(-5, \infty)

Inequality 2: 112x<6x11 - 2x < 6 - x 116<x+2x11 - 6 < -x + 2x 5<x5 < x Solution 2: (5,)(5, \infty)

Intersection of Solution 1 and Solution 2: (5,)(5,)=(5,)(-5, \infty) \cap (5, \infty) = (5, \infty). Solution: x(5,)x \in (5, \infty)

(xiii) 2x41+x3-2 - \frac{x}{4} \leq \frac{1+x}{3} and 3x<4(x3)3 - x < 4(x - 3)

Inequality 1: 2x41+x3-2 - \frac{x}{4} \leq \frac{1+x}{3} Multiply by 12: 12(2)12(x4)12(1+x3)12(-2) - 12(\frac{x}{4}) \leq 12(\frac{1+x}{3}) 243x4(1+x)-24 - 3x \leq 4(1+x) 243x4+4x-24 - 3x \leq 4 + 4x 2444x+3x-24 - 4 \leq 4x + 3x 287x-28 \leq 7x x4x \geq -4 Solution 1: [4,)[-4, \infty)

Inequality 2: 3x<4(x3)3 - x < 4(x - 3) 3x<4x123 - x < 4x - 12 3+12<4x+x3 + 12 < 4x + x 15<5x15 < 5x x>3x > 3 Solution 2: (3,)(3, \infty)

Intersection of Solution 1 and Solution 2: [4,)(3,)=(3,)[-4, \infty) \cap (3, \infty) = (3, \infty). Solution: x(3,)x \in (3, \infty)


Explanation of the solution:

Each problem involves solving one or more linear or rational inequalities.

  1. Linear Inequalities: Simplify by distributing, combining like terms, and isolating xx. Remember to reverse the inequality sign if multiplying or dividing by a negative number.
  2. Rational Inequalities:
    • Move all terms to one side to get P(x)Q(x)0\frac{P(x)}{Q(x)} \geq 0 or P(x)Q(x)0\frac{P(x)}{Q(x)} \leq 0.
    • Find critical points by setting the numerator and denominator to zero.
    • Plot critical points on a number line, dividing it into intervals.
    • Test a value from each interval in the inequality to determine the sign.
    • The solution is the union of intervals that satisfy the inequality. Remember that values making the denominator zero are excluded.
  3. Compound Inequalities (systems): Solve each inequality separately and then find the intersection of their solution sets.

Answer: (i) x(,1)[1,)x \in (-\infty, -1) \cup [1, \infty) (ii) x(,2)[2,)x \in (-\infty, -2) \cup [2, \infty) (iii) x(,1)x \in (-\infty, -1) (iv) x(12,5)x \in (-12, -5) (v) x[16,7)x \in [-16, -7) (vi) No solution (\emptyset) (vii) x[8,)x \in [8, \infty) (viii) x(4,7)x \in (4, 7) (ix) x(,120)x \in (-\infty, 120) (x) x(1/4,)x \in (1/4, \infty) (xi) x(1,3)x \in (-1, 3) (xii) x(5,)x \in (5, \infty) (xiii) x(3,)x \in (3, \infty)