Solveeit Logo

Question

Mathematics Question on Sequence and series

214,418,8116,16132............2^{\frac{1}{4}}, 4^{\frac{1}{8}}, 8^{\frac{1}{16}}, 16^{\frac{1}{32}}............ is equal to

A

1

B

2

C

32\frac{3}{2}

D

52\frac{5}{2}

Answer

2

Explanation

Solution

214.418.8116.16132.....2^{\frac{1}{4}}.4^{\frac{1}{8}} .8^{\frac{1}{16}} .16^{\frac{1}{32}}..... =214.228.2316.2432...... = 2^{\frac{1}{4}}.2^{\frac{2}{8}}.2^{\frac{3}{16}}.2^{\frac{4}{32}} ...... =214+28+316+432+.....=2s= 2^{\frac{1}{4}+\frac{2}{8}+\frac{3}{16}+\frac{4}{32}} + ..... = 2^{s} where S=14+28+316+432+.....S = \frac{1}{4}+\frac{2}{8}+\frac{3}{16}+\frac{4}{32}+..... 12S=18+216+332+.....\therefore \frac{1}{2}S = \frac{1}{8}+\frac{2}{16}+\frac{3}{32} +..... subtracting, we get S2=14+18+116+132+.....\frac{S}{2} = \frac{1}{4} +\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+.....\infty =14112=1412=12= \frac{\frac{1}{4}}{1-\frac{1}{2}} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2} S=1 \Rightarrow S = 1. \therefore reqd sum 21=22^{1} = 2.