Solveeit Logo

Question

Question: For x ∈ R, let [x] denote the greatest integer ≥ x, then the sum of the series $\left[-\frac{1}{3}\r...

For x ∈ R, let [x] denote the greatest integer ≥ x, then the sum of the series [13]+[131100]+........+[1399100]\left[-\frac{1}{3}\right] + \left[-\frac{1}{3}-\frac{1}{100}\right]+........+\left[-\frac{1}{3}-\frac{99}{100}\right] is:

A

-153

B

-133

C

-135

D

-131

Answer

-133

Explanation

Solution

The given series is S=[13]+[131100]+........+[1399100]S = \left[-\frac{1}{3}\right] + \left[-\frac{1}{3}-\frac{1}{100}\right]+........+\left[-\frac{1}{3}-\frac{99}{100}\right].

The general term of the series is ak=[13k100]a_k = \left[-\frac{1}{3}-\frac{k}{100}\right] for k=0,1,2,,99k = 0, 1, 2, \ldots, 99. There are 100100 terms in the series.

We need to evaluate the value of [13k100]\left[-\frac{1}{3}-\frac{k}{100}\right] for each kk from 00 to 9999. The value of [x][x] is the greatest integer less than or equal to xx. Let's find the range of kk for which the value of [13k100]\left[-\frac{1}{3}-\frac{k}{100}\right] is constant. We know that [x]=n[x] = n if nx<n+1n \le x < n+1 for an integer nn. So, [13k100]=n\left[-\frac{1}{3}-\frac{k}{100}\right] = n if n13k100<n+1n \le -\frac{1}{3}-\frac{k}{100} < n+1. Multiplying by 1-1 and reversing the inequalities, we get n1<13+k100n-n-1 < \frac{1}{3}+\frac{k}{100} \le -n.

Let's find the values of nn that the terms can take. For k=0k=0, the term is [13]=1\left[-\frac{1}{3}\right] = -1. So n=1n=-1 occurs. For the term to be 1-1, we have 113k100<0-1 \le -\frac{1}{3}-\frac{k}{100} < 0. 113+k100>01 \ge \frac{1}{3}+\frac{k}{100} > 0. 23k100>13\frac{2}{3} \ge \frac{k}{100} > -\frac{1}{3}. 2003k>1003\frac{200}{3} \ge k > -\frac{100}{3}. 66.66k>33.3366.66\ldots \ge k > -33.33\ldots. Since kk starts from 00, the values of kk for which [13k100]=1\left[-\frac{1}{3}-\frac{k}{100}\right] = -1 are k=0,1,,66k=0, 1, \ldots, 66. The number of such terms is 660+1=6766 - 0 + 1 = 67. The sum of these terms is 67×(1)=6767 \times (-1) = -67.

Let's find when the value of the term is 2-2. So n=2n=-2. For the term to be 2-2, we have 213k100<1-2 \le -\frac{1}{3}-\frac{k}{100} < -1. 213+k100>12 \ge \frac{1}{3}+\frac{k}{100} > 1. 213k100>1132-\frac{1}{3} \ge \frac{k}{100} > 1-\frac{1}{3}. 53k100>23\frac{5}{3} \ge \frac{k}{100} > \frac{2}{3}. 5003k>2003\frac{500}{3} \ge k > \frac{200}{3}. 166.66k>66.66166.66\ldots \ge k > 66.66\ldots. The values of kk in this range that are in our series (0k990 \le k \le 99) are k=67,68,,99k=67, 68, \ldots, 99. The number of such terms is 9967+1=3399 - 67 + 1 = 33. The sum of these terms is 33×(2)=6633 \times (-2) = -66.

Let's check if any term is 3-3. So n=3n=-3. For the term to be 3-3, we have 313k100<2-3 \le -\frac{1}{3}-\frac{k}{100} < -2. 313+k100>23 \ge \frac{1}{3}+\frac{k}{100} > 2. 313k100>2133-\frac{1}{3} \ge \frac{k}{100} > 2-\frac{1}{3}. 83k100>53\frac{8}{3} \ge \frac{k}{100} > \frac{5}{3}. 8003k>5003\frac{800}{3} \ge k > \frac{500}{3}. 266.66k>166.66266.66\ldots \ge k > 166.66\ldots. Since the maximum value of kk in the series is 9999, there are no terms with value 3-3 or less.

The total sum of the series is the sum of the terms with value 1-1 and the sum of the terms with value 2-2. Total sum S=(67)+(66)=133S = (-67) + (-66) = -133.