Solveeit Logo

Question

Question: Find the value of \(\displaystyle \lim_{x\to 0} \frac{\sqrt{1+2x} - \sqrt{1-2x}}{\sin x}\)...

Find the value of limx01+2x12xsinx\displaystyle \lim_{x\to 0} \frac{\sqrt{1+2x} - \sqrt{1-2x}}{\sin x}

Answer

2

Explanation

Solution

Step 1. Expand the square‐roots using the first two terms of the Taylor series at x=0x=0:

1+2x1+xx22,12x1xx22.\sqrt{1+2x} \approx 1 + x - \frac{x^2}{2}, \quad \sqrt{1-2x} \approx 1 - x - \frac{x^2}{2}.

Step 2. Compute the difference:

1+2x12x(1+xx22)(1xx22)=2x.\sqrt{1+2x} - \sqrt{1-2x} \approx (1 + x - \tfrac{x^2}{2}) - (1 - x - \tfrac{x^2}{2}) = 2x.

Step 3. Use sinxx\sin x \approx x as x0x \to 0. Hence

1+2x12xsinx2xx=2.\frac{\sqrt{1+2x} - \sqrt{1-2x}}{\sin x} \approx \frac{2x}{x} = 2.

2\boxed{2} is the limit.