Solveeit Logo

Question

Question: Find the condition for the line $x \cos \theta + y \sin \theta = P$ to be a tangent to the ellipse $...

Find the condition for the line xcosθ+ysinθ=Px \cos \theta + y \sin \theta = P to be a tangent to the ellipse 5x2+7y2=1125x^2 + 7y^2 = 112?

Answer

The condition is P2=1125cos2θ+16sin2θP^2 = \frac{112}{5} \cos^2 \theta + 16 \sin^2 \theta.

Explanation

Solution

The standard form of the ellipse is x2112/5+y216=1\frac{x^2}{112/5} + \frac{y^2}{16} = 1, so a2=1125a^2 = \frac{112}{5} and b2=16b^2 = 16. The condition for the line xcosθ+ysinθ=Px \cos \theta + y \sin \theta = P to be tangent to the ellipse x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 is P2=a2cos2θ+b2sin2θP^2 = a^2 \cos^2 \theta + b^2 \sin^2 \theta. Substituting the values of a2a^2 and b2b^2 gives P2=1125cos2θ+16sin2θP^2 = \frac{112}{5} \cos^2 \theta + 16 \sin^2 \theta.