Solveeit Logo

Question

Question: Evaluate the integral $$ \int_{1}^{4}\int_{0}^{\sqrt{x}}\frac{3}{2}e^{y/\sqrt{x}}dydx. $$...

Evaluate the integral 140x32ey/xdydx.\int_{1}^{4}\int_{0}^{\sqrt{x}}\frac{3}{2}e^{y/\sqrt{x}}dydx.

Answer

7(e-1)

Explanation

Solution

Evaluate the inner integral 0x32ey/xdy\int_{0}^{\sqrt{x}}\frac{3}{2}e^{y/\sqrt{x}}dy using substitution u=y/xu=y/\sqrt{x}, yielding 3x2(e1)\frac{3\sqrt{x}}{2}(e-1). Then, evaluate the outer integral 143x2(e1)dx\int_{1}^{4} \frac{3\sqrt{x}}{2}(e-1) dx. This simplifies to 3(e1)214x1/2dx\frac{3(e-1)}{2}\int_{1}^{4} x^{1/2} dx. Applying the power rule and limits gives (e1)[x3/2]14(e-1)[x^{3/2}]_{1}^{4}, which evaluates to (e1)(81)=7(e1)(e-1)(8-1) = 7(e-1).