Solveeit Logo

Question

Question: Determine the percentage composition (by mass) of a mixture of anhydrous sodium carbonate and sodium...

Determine the percentage composition (by mass) of a mixture of anhydrous sodium carbonate and sodium bicarbonate from the following data:

wt. of the mixture taken = 2g Loss in weight on heating = 0.124 gm.

Answer

Sodium bicarbonate (NaHCO3): 16.8% Sodium carbonate (Na2CO3): 83.2%

Explanation

Solution

The problem involves the thermal decomposition of a mixture containing anhydrous sodium carbonate (Na2CO3\text{Na}_2\text{CO}_3) and sodium bicarbonate (NaHCO3\text{NaHCO}_3).

  1. Identify the decomposing component: Anhydrous sodium carbonate (Na2CO3\text{Na}_2\text{CO}_3) is thermally stable and does not decompose on heating. Sodium bicarbonate (NaHCO3\text{NaHCO}_3) decomposes on heating, leading to a loss in mass.

  2. Write the balanced chemical equation for decomposition: The decomposition of sodium bicarbonate is given by: 2NaHCO3(s)ΔNa2CO3(s)+H2O(g)+CO2(g)2\text{NaHCO}_3(\text{s}) \xrightarrow{\Delta} \text{Na}_2\text{CO}_3(\text{s}) + \text{H}_2\text{O}(\text{g}) + \text{CO}_2(\text{g})

  3. Calculate molar masses:

    • Molar mass of NaHCO3=23(Na)+1(H)+12(C)+3×16(O)=84 g/mol\text{NaHCO}_3 = 23 (\text{Na}) + 1 (\text{H}) + 12 (\text{C}) + 3 \times 16 (\text{O}) = 84 \text{ g/mol}
    • Molar mass of H2O=2×1(H)+16(O)=18 g/mol\text{H}_2\text{O} = 2 \times 1 (\text{H}) + 16 (\text{O}) = 18 \text{ g/mol}
    • Molar mass of CO2=12(C)+2×16(O)=44 g/mol\text{CO}_2 = 12 (\text{C}) + 2 \times 16 (\text{O}) = 44 \text{ g/mol}
  4. Relate mass of NaHCO3\text{NaHCO}_3 to mass loss: From the balanced equation, 2 moles of NaHCO3\text{NaHCO}_3 (i.e., 2×84=1682 \times 84 = 168 g) decompose to produce 1 mole of H2O\text{H}_2\text{O} (18 g) and 1 mole of CO2\text{CO}_2 (44 g). The total mass loss from 168 g of NaHCO3\text{NaHCO}_3 is 18 g(H2O)+44 g(CO2)=62 g18 \text{ g} (\text{H}_2\text{O}) + 44 \text{ g} (\text{CO}_2) = 62 \text{ g}.

  5. Calculate the mass of NaHCO3\text{NaHCO}_3 in the mixture: Let the mass of NaHCO3\text{NaHCO}_3 in the mixture be xx g. We know that 168 g of NaHCO3\text{NaHCO}_3 causes a mass loss of 62 g. Given loss in weight on heating = 0.124 g. Using proportionality: x g NaHCO30.124 g (mass loss)=168 g NaHCO362 g (mass loss)\frac{x \text{ g NaHCO}_3}{0.124 \text{ g (mass loss)}} = \frac{168 \text{ g NaHCO}_3}{62 \text{ g (mass loss)}} x=0.124×16862x = 0.124 \times \frac{168}{62} x=0.002×168x = 0.002 \times 168 x=0.336 gx = 0.336 \text{ g} So, the mass of sodium bicarbonate (NaHCO3\text{NaHCO}_3) in the mixture is 0.336 g.

  6. Calculate the mass of Na2CO3\text{Na}_2\text{CO}_3 in the mixture: Total mass of the mixture = 2 g. Mass of Na2CO3=Total mass of mixtureMass of NaHCO3\text{Na}_2\text{CO}_3 = \text{Total mass of mixture} - \text{Mass of NaHCO}_3 Mass of Na2CO3=2 g0.336 g\text{Na}_2\text{CO}_3 = 2 \text{ g} - 0.336 \text{ g} Mass of Na2CO3=1.664 g\text{Na}_2\text{CO}_3 = 1.664 \text{ g}

  7. Determine the percentage composition by mass: Percentage of NaHCO3=Mass of NaHCO3Total mass of mixture×100%\text{NaHCO}_3 = \frac{\text{Mass of NaHCO}_3}{\text{Total mass of mixture}} \times 100\% Percentage of NaHCO3=0.336 g2 g×100%=16.8%\text{NaHCO}_3 = \frac{0.336 \text{ g}}{2 \text{ g}} \times 100\% = 16.8\%

    Percentage of Na2CO3=Mass of Na2CO3Total mass of mixture×100%\text{Na}_2\text{CO}_3 = \frac{\text{Mass of Na}_2\text{CO}_3}{\text{Total mass of mixture}} \times 100\% Percentage of Na2CO3=1.664 g2 g×100%=83.2%\text{Na}_2\text{CO}_3 = \frac{1.664 \text{ g}}{2 \text{ g}} \times 100\% = 83.2\%

The percentage composition of the mixture is 16.8% sodium bicarbonate and 83.2% sodium carbonate.


Explanation of the solution:

  1. Sodium bicarbonate (NaHCO3\text{NaHCO}_3) decomposes on heating, while sodium carbonate (Na2CO3\text{Na}_2\text{CO}_3) does not.
  2. The decomposition reaction is 2NaHCO3Na2CO3+H2O+CO22\text{NaHCO}_3 \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2.
  3. Molar mass of NaHCO3\text{NaHCO}_3 is 84 g/mol. Molar mass of H2O\text{H}_2\text{O} is 18 g/mol, and CO2\text{CO}_2 is 44 g/mol.
  4. From stoichiometry, 168 g (2×842 \times 84) of NaHCO3\text{NaHCO}_3 produces a mass loss of 62 g (18+4418 + 44).
  5. Given loss in weight is 0.124 g.
  6. Mass of NaHCO3=0.124 g×168 g62 g=0.336 g\text{NaHCO}_3 = 0.124 \text{ g} \times \frac{168 \text{ g}}{62 \text{ g}} = 0.336 \text{ g}.
  7. Mass of Na2CO3=Total massMass of NaHCO3=2 g0.336 g=1.664 g\text{Na}_2\text{CO}_3 = \text{Total mass} - \text{Mass of NaHCO}_3 = 2 \text{ g} - 0.336 \text{ g} = 1.664 \text{ g}.
  8. Percentage of NaHCO3=0.3362×100%=16.8%\text{NaHCO}_3 = \frac{0.336}{2} \times 100\% = 16.8\%.
  9. Percentage of Na2CO3=1.6642×100%=83.2%\text{Na}_2\text{CO}_3 = \frac{1.664}{2} \times 100\% = 83.2\%.