Solveeit Logo

Question

Question: Consider a capacitor placed in free space, consisting of two concentric circular parallel plates of ...

Consider a capacitor placed in free space, consisting of two concentric circular parallel plates of radii r. The separation z between the plates oscillates with a constant frequency ω\omega, i.e., z(t)=z0+z1cosωtz(t) = z_0 + z_1 cos \omega t. Here z0z_0 and z1(<z0)z_1 (<z_0) are constants. The separation z(t)(<<r)z(t) (<< r) is varied in such a way that the voltage V0V_0 across the capacitor remains constant.

(a) Calculate the displacement current density and the displacement current between the plates through a concentric circle of radius r/2.

(b) Calculate the magnetic field vector between the plates at a distance r/2 from the axis of the capacitor.

Answer

The displacement current density is Jd=ϵ0V0z1ωsinωt(z0+z1cosωt)2k^\vec{J}_d = \epsilon_0 V_0 \frac{z_1 \omega \sin \omega t}{(z_0 + z_1 \cos \omega t)^2} \hat{k}, the displacement current through a circle of radius r/2 is Id=ϵ0πr2V0z1ωsinωt4(z0+z1cosωt)2I_d = \frac{\epsilon_0 \pi r^2 V_0 z_1 \omega \sin \omega t}{4 (z_0 + z_1 \cos \omega t)^2}, and the magnetic field vector at distance r/2 is B=μ0r4ϵ0V0z1ωsinωt(z0+z1cosωt)2ϕ^\vec{B} = \frac{\mu_0 r}{4} \epsilon_0 V_0 \frac{z_1 \omega \sin \omega t}{(z_0 + z_1 \cos \omega t)^2} \hat{\phi}.

Explanation

Solution

The separation between the plates is z(t)=z0+z1cosωtz(t) = z_0 + z_1 \cos \omega t. The voltage across the capacitor is constant, V0V_0. The capacitance is C(t)=ϵ0Az(t)=ϵ0πr2z(t)C(t) = \frac{\epsilon_0 A}{z(t)} = \frac{\epsilon_0 \pi r^2}{z(t)}. The charge on the plates is Q(t)=C(t)V0=ϵ0πr2V0z(t)Q(t) = C(t) V_0 = \frac{\epsilon_0 \pi r^2 V_0}{z(t)}.

The electric field between the plates is approximately uniform and perpendicular to the plates, given by E(t)=V0z(t)E(t) = \frac{V_0}{z(t)}. Assuming the plates are in the xy-plane and the separation is along the z-axis, E(t)=V0z(t)k^\vec{E}(t) = \frac{V_0}{z(t)} \hat{k}.

(a) The displacement current density is Jd=ϵ0Et\vec{J}_d = \epsilon_0 \frac{\partial \vec{E}}{\partial t}. Jd=ϵ0t(V0z(t)k^)=ϵ0V0ddt(1z(t))k^\vec{J}_d = \epsilon_0 \frac{\partial}{\partial t} \left( \frac{V_0}{z(t)} \hat{k} \right) = \epsilon_0 V_0 \frac{d}{dt} \left( \frac{1}{z(t)} \right) \hat{k}. We have z(t)=z0+z1cosωtz(t) = z_0 + z_1 \cos \omega t. ddt(1z(t))=1z(t)2dzdt=1(z0+z1cosωt)2(z1ωsinωt)=z1ωsinωt(z0+z1cosωt)2\frac{d}{dt} \left( \frac{1}{z(t)} \right) = -\frac{1}{z(t)^2} \frac{dz}{dt} = -\frac{1}{(z_0 + z_1 \cos \omega t)^2} (-z_1 \omega \sin \omega t) = \frac{z_1 \omega \sin \omega t}{(z_0 + z_1 \cos \omega t)^2}. So, the displacement current density is Jd=ϵ0V0z1ωsinωt(z0+z1cosωt)2k^\vec{J}_d = \epsilon_0 V_0 \frac{z_1 \omega \sin \omega t}{(z_0 + z_1 \cos \omega t)^2} \hat{k}.

The displacement current through a concentric circle of radius r/2 is given by Id=SJddAI_d = \int_S \vec{J}_d \cdot d\vec{A}, where S is the area of the circle. The area vector dAd\vec{A} is parallel to Jd\vec{J}_d (i.e., in the k^\hat{k} direction). The area of the circle is A=π(r/2)2=πr24A' = \pi (r/2)^2 = \frac{\pi r^2}{4}. Assuming Jd\vec{J}_d is uniform over this area (valid for r/2<rr/2 < r), the integral becomes Id=JdAI_d = J_d \cdot A'. Id=(ϵ0V0z1ωsinωt(z0+z1cosωt)2)(πr24)=ϵ0πr2V0z1ωsinωt4(z0+z1cosωt)2I_d = \left( \epsilon_0 V_0 \frac{z_1 \omega \sin \omega t}{(z_0 + z_1 \cos \omega t)^2} \right) \left( \frac{\pi r^2}{4} \right) = \frac{\epsilon_0 \pi r^2 V_0 z_1 \omega \sin \omega t}{4 (z_0 + z_1 \cos \omega t)^2}.

(b) To find the magnetic field vector between the plates at a distance ρ=r/2\rho = r/2 from the axis, we use Ampere-Maxwell's law: Bdl=μ0(Ienc+Id,enc)\oint \vec{B} \cdot d\vec{l} = \mu_0 (I_{enc} + I_{d, enc}). Between the plates, there is no conduction current, so Ienc=0I_{enc} = 0. The law becomes Bdl=μ0Id,enc\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{d, enc}. Due to the cylindrical symmetry, the magnetic field lines are concentric circles around the axis, and the magnitude of B\vec{B} depends only on the distance ρ\rho from the axis. We choose a circular Amperian loop of radius ρ=r/2\rho = r/2 centered on the axis, lying in a plane between the plates. Bdl=B(2πρ)\oint \vec{B} \cdot d\vec{l} = B(2\pi \rho). The enclosed displacement current Id,encI_{d, enc} is the displacement current passing through the area enclosed by the loop, which is a circle of radius ρ\rho. Id,enc=AreaJddA=Jd(πρ2)I_{d, enc} = \int_{Area} \vec{J}_d \cdot d\vec{A} = J_d \cdot (\pi \rho^2), assuming JdJ_d is uniform. Id,enc=(ϵ0V0z1ωsinωt(z0+z1cosωt)2)(πρ2)I_{d, enc} = \left( \epsilon_0 V_0 \frac{z_1 \omega \sin \omega t}{(z_0 + z_1 \cos \omega t)^2} \right) (\pi \rho^2). Applying Ampere-Maxwell's law: B(2πρ)=μ0(ϵ0V0z1ωsinωt(z0+z1cosωt)2)(πρ2)B(2\pi \rho) = \mu_0 \left( \epsilon_0 V_0 \frac{z_1 \omega \sin \omega t}{(z_0 + z_1 \cos \omega t)^2} \right) (\pi \rho^2). B=μ0ρ2ϵ0V0z1ωsinωt(z0+z1cosωt)2B = \frac{\mu_0 \rho}{2} \epsilon_0 V_0 \frac{z_1 \omega \sin \omega t}{(z_0 + z_1 \cos \omega t)^2}. At a distance ρ=r/2\rho = r/2: B(r/2)=μ0(r/2)2ϵ0V0z1ωsinωt(z0+z1cosωt)2=μ0r4ϵ0V0z1ωsinωt(z0+z1cosωt)2B(r/2) = \frac{\mu_0 (r/2)}{2} \epsilon_0 V_0 \frac{z_1 \omega \sin \omega t}{(z_0 + z_1 \cos \omega t)^2} = \frac{\mu_0 r}{4} \epsilon_0 V_0 \frac{z_1 \omega \sin \omega t}{(z_0 + z_1 \cos \omega t)^2}. The direction of the magnetic field is azimuthal (ϕ^\hat{\phi}) according to the right-hand rule, curling around the direction of Jd\vec{J}_d. B(ρ=r/2,t)=μ0r4ϵ0V0z1ωsinωt(z0+z1cosωt)2ϕ^\vec{B}(\rho=r/2, t) = \frac{\mu_0 r}{4} \epsilon_0 V_0 \frac{z_1 \omega \sin \omega t}{(z_0 + z_1 \cos \omega t)^2} \hat{\phi}.