Solveeit Logo

Question

Question: Calculate the viscous force acting on a rain drop of diameter 2 mm, falling with a uniform velocity ...

Calculate the viscous force acting on a rain drop of diameter 2 mm, falling with a uniform velocity 4 m/s through air. The coefficient of viscosity of air is 1.8 x 10-5 Ns/m².

Answer

1.36 x 10-6 N

Explanation

Solution

The viscous force acting on a spherical object moving through a fluid at low Reynolds number is given by Stokes' Law:

Fv=6πηrvF_v = 6 \pi \eta r v

where:

FvF_v is the viscous force η\eta is the coefficient of viscosity of the fluid rr is the radius of the spherical object vv is the velocity of the object

Given values:

Diameter of the rain drop, d=2d = 2 mm Radius of the rain drop, r=d/2=2/2=1r = d/2 = 2/2 = 1 mm =1×103= 1 \times 10^{-3} m Uniform velocity of the rain drop, v=4v = 4 m/s Coefficient of viscosity of air, η=1.8×105\eta = 1.8 \times 10^{-5} Ns/m²

Substitute these values into Stokes' Law formula:

Fv=6π×(1.8×105 Ns/m²)×(1×103 m)×(4 m/s)F_v = 6 \pi \times (1.8 \times 10^{-5} \text{ Ns/m²}) \times (1 \times 10^{-3} \text{ m}) \times (4 \text{ m/s}) Fv=(6×1.8×1×4)×π×(105×103)F_v = (6 \times 1.8 \times 1 \times 4) \times \pi \times (10^{-5} \times 10^{-3}) N Fv=(10.8×4)×π×108F_v = (10.8 \times 4) \times \pi \times 10^{-8} N Fv=43.2×π×108F_v = 43.2 \times \pi \times 10^{-8} N

Using the value of π3.14159\pi \approx 3.14159:

Fv43.2×3.14159×108F_v \approx 43.2 \times 3.14159 \times 10^{-8} N Fv135.7167648×108F_v \approx 135.7167648 \times 10^{-8} N Fv1.357167648×106F_v \approx 1.357167648 \times 10^{-6} N

Rounding to 3 significant figures: Fv1.36×106F_v \approx 1.36 \times 10^{-6} N.