Solveeit Logo

Question

Question: 2 block are connected by a spring and a force is applied on one of the block find the maximum extens...

2 block are connected by a spring and a force is applied on one of the block find the maximum extension in spring

Answer

2 \frac{F m_2}{k(m_1 + m_2)}

Explanation

Solution

Let m1m_1 and m2m_2 be the masses of the two blocks, kk be the spring constant, and FF be the applied force on block m1m_1. The blocks are initially at rest and the spring is at its natural length.

Let x1x_1 and x2x_2 be the positions of the blocks m1m_1 and m2m_2 respectively, measured from their initial positions. The extension of the spring is x=x1x2x = x_1 - x_2.

The equation of motion for m1m_1 is:

m1d2x1dt2=Fkxm_1 \frac{d^2x_1}{dt^2} = F - kx

The equation of motion for m2m_2 is:

m2d2x2dt2=kxm_2 \frac{d^2x_2}{dt^2} = kx

Subtracting the second equation divided by m2m_2 from the first equation divided by m1m_1, we get the equation for the relative acceleration d2xdt2=d2x1dt2d2x2dt2\frac{d^2x}{dt^2} = \frac{d^2x_1}{dt^2} - \frac{d^2x_2}{dt^2}:

d2xdt2=Fkxm1kxm2=Fm1kx(1m1+1m2)=Fm1kxm1+m2m1m2\frac{d^2x}{dt^2} = \frac{F - kx}{m_1} - \frac{kx}{m_2} = \frac{F}{m_1} - kx \left(\frac{1}{m_1} + \frac{1}{m_2}\right) = \frac{F}{m_1} - kx \frac{m_1 + m_2}{m_1 m_2}

Let μ=m1m2m1+m2\mu = \frac{m_1 m_2}{m_1 + m_2} be the reduced mass. The equation becomes:

d2xdt2=Fm1kμx\frac{d^2x}{dt^2} = \frac{F}{m_1} - \frac{k}{\mu} x

Let's find the equilibrium extension xeqx_{eq} where d2xdt2=0\frac{d^2x}{dt^2} = 0:

0=Fm1kμxeq    xeq=Fμm1k=Fm1km1m2m1+m2=Fm2k(m1+m2)0 = \frac{F}{m_1} - \frac{k}{\mu} x_{eq} \implies x_{eq} = \frac{F \mu}{m_1 k} = \frac{F}{m_1 k} \frac{m_1 m_2}{m_1 + m_2} = \frac{F m_2}{k(m_1 + m_2)}

Let y=xxeqy = x - x_{eq}. Then d2ydt2=d2xdt2\frac{d^2y}{dt^2} = \frac{d^2x}{dt^2}.

d2ydt2=Fm1kμ(y+xeq)=Fm1kμykμxeq\frac{d^2y}{dt^2} = \frac{F}{m_1} - \frac{k}{\mu} (y + x_{eq}) = \frac{F}{m_1} - \frac{k}{\mu} y - \frac{k}{\mu} x_{eq}

Substituting xeq=Fμm1kx_{eq} = \frac{F \mu}{m_1 k}:

d2ydt2=Fm1kμykμFμm1k=Fm1kμyFm1=kμy\frac{d^2y}{dt^2} = \frac{F}{m_1} - \frac{k}{\mu} y - \frac{k}{\mu} \frac{F \mu}{m_1 k} = \frac{F}{m_1} - \frac{k}{\mu} y - \frac{F}{m_1} = -\frac{k}{\mu} y

This is the equation of a simple harmonic oscillator for the variable yy, with angular frequency ω=kμ\omega = \sqrt{\frac{k}{\mu}}. The initial conditions are x(0)=0x(0) = 0 (natural length) and dxdt(0)=v1(0)v2(0)=00=0\frac{dx}{dt}(0) = v_1(0) - v_2(0) = 0 - 0 = 0. In terms of yy, the initial conditions are:

y(0)=x(0)xeq=0xeq=xeqy(0) = x(0) - x_{eq} = 0 - x_{eq} = -x_{eq} dydt(0)=dxdt(0)=0\frac{dy}{dt}(0) = \frac{dx}{dt}(0) = 0

The general solution for d2ydt2=ω2y\frac{d^2y}{dt^2} = -\omega^2 y is y(t)=Acos(ωt)+Bsin(ωt)y(t) = A \cos(\omega t) + B \sin(\omega t). Using the initial condition dydt(0)=0\frac{dy}{dt}(0) = 0:

dydt(t)=Aωsin(ωt)+Bωcos(ωt)\frac{dy}{dt}(t) = -A \omega \sin(\omega t) + B \omega \cos(\omega t) dydt(0)=Bω=0    B=0\frac{dy}{dt}(0) = B \omega = 0 \implies B = 0

So, y(t)=Acos(ωt)y(t) = A \cos(\omega t).

Using the initial condition y(0)=xeqy(0) = -x_{eq}:

y(0)=Acos(0)=A=xeqy(0) = A \cos(0) = A = -x_{eq}

Thus, the solution for y(t)y(t) is y(t)=xeqcos(ωt)y(t) = -x_{eq} \cos(\omega t).

The extension x(t)x(t) is given by x(t)=y(t)+xeq=xeqcos(ωt)+xeq=xeq(1cos(ωt))x(t) = y(t) + x_{eq} = -x_{eq} \cos(\omega t) + x_{eq} = x_{eq}(1 - \cos(\omega t)).

The extension x(t)x(t) oscillates around the equilibrium extension xeqx_{eq}. The maximum value of x(t)x(t) occurs when cos(ωt)=1\cos(\omega t) = -1.

xmax=xeq(1(1))=2xeqx_{max} = x_{eq}(1 - (-1)) = 2 x_{eq}

Substituting the value of xeqx_{eq}:

xmax=2Fm2k(m1+m2)x_{max} = 2 \frac{F m_2}{k(m_1 + m_2)}

This formula gives the maximum extension in the spring when a force FF is applied to block m1m_1. If the force FF were applied to block m2m_2 instead, the result would be xmax=2Fm1k(m1+m2)x_{max} = 2 \frac{F m_1}{k(m_1 + m_2)}.

The question does not specify the masses or the force, so the answer is the formula in terms of FF, kk, m1m_1, and m2m_2.