Solveeit Logo

Question

Mathematics Question on Applications of Determinants and Matrices

2, b, c are in A.P. and the range of determinant 111 2bc 4b2c2\begin{vmatrix}1&1&1\\\ 2&b&c\\\ 4&b^{2}&c^{2}\end{vmatrix} is [2, 16]. Then find range of c is

A

[6, 8]

B

[0, 4]

C

[8, 12]

D

[4, 6]

Answer

[4, 6]

Explanation

Solution

124 1bb2 1cc2=(2b)(bc)(c2)\begin{vmatrix}1& 2 & 4 \\\ 1&b&b^2 \\\ 1 & c &c^{2}\end{vmatrix} = (2 - b) (b - c) (c - 2)
Given that 2, b, c are in AP.
So, 2b=c+22b = c + 2
2(2c+22)(c+22c)(c2)162 \le\left(2 - \frac{c+2}{2}\right)\left(\frac{c+2}{2} -c\right) \left(c-2\right) \le 16
2(c2)34162 \le\frac{\left(c-2\right)^{3}}{4} \le16
2c242\le c-2\le4
4c64 \le c \le 6

So, the correct option is (D): [4,6][4, 6].