Solveeit Logo

Question

Question: A wire of length 20 m is to the cut into two pieces. A piece of length $l_1$ is bent to make a squar...

A wire of length 20 m is to the cut into two pieces. A piece of length l1l_1 is bent to make a square of area A1A_1 and the other piece of length l2l_2 is made into a circle of area A2A_2. If 2A1+3A22A_1 +3A_2 is minimum then (πl1):l2(\pi l_1): l_2 is equal to:

A

6:1

B

3:1

C

4:1

D

1:6

Answer

6:1

Explanation

Solution

Let l1l_1 and l2l_2 be the lengths of the two pieces, so l1+l2=20l_1 + l_2 = 20. The area of the square is A1=(l14)2=l1216A_1 = (\frac{l_1}{4})^2 = \frac{l_1^2}{16}. The area of the circle is A2=π(l22π)2=l224πA_2 = \pi (\frac{l_2}{2\pi})^2 = \frac{l_2^2}{4\pi}. We want to minimize E=2A1+3A2=l128+3l224πE = 2A_1 + 3A_2 = \frac{l_1^2}{8} + \frac{3l_2^2}{4\pi}. Substitute l2=20l1l_2 = 20 - l_1: E(l1)=l128+3(20l1)24πE(l_1) = \frac{l_1^2}{8} + \frac{3(20 - l_1)^2}{4\pi}. To find the minimum, set dEdl1=l143(20l1)2π=0\frac{dE}{dl_1} = \frac{l_1}{4} - \frac{3(20 - l_1)}{2\pi} = 0. This gives l14=3(20l1)2π\frac{l_1}{4} = \frac{3(20 - l_1)}{2\pi}, which simplifies to 2πl1=12(20l1)2\pi l_1 = 12(20 - l_1). Solving for l1l_1: 2πl1=24012l1    (2π+12)l1=240    l1=120π+62\pi l_1 = 240 - 12l_1 \implies (2\pi + 12)l_1 = 240 \implies l_1 = \frac{120}{\pi + 6}. Then l2=20l1=20120π+6=20ππ+6l_2 = 20 - l_1 = 20 - \frac{120}{\pi + 6} = \frac{20\pi}{\pi + 6}. The ratio (πl1):l2=(π120π+6):(20ππ+6)=120π:20π=6:1(\pi l_1) : l_2 = (\pi \frac{120}{\pi + 6}) : (\frac{20\pi}{\pi + 6}) = 120\pi : 20\pi = 6:1.