Solveeit Logo

Question

Question: A small ball of mass $m$ is thrown upward with velocity $u$ from the ground. The ball experiences a ...

A small ball of mass mm is thrown upward with velocity uu from the ground. The ball experiences a resistive force mkv2mkv^2 where vv is its speed. The maximum height attained by the ball is

A

12ktan1ku2g\frac{1}{2k}tan^{-1}\frac{ku^2}{g}

B

12kln(1+ku2g)\frac{1}{2k}ln\left(1+\frac{ku^2}{g}\right)

C

1ktan1ku22g\frac{1}{k}tan^{-1}\frac{ku^2}{2g}

D

1kln(1+ku22g)\frac{1}{k}ln\left(1+\frac{ku^2}{2g}\right)

Answer

12kln(1+ku2g)\frac{1}{2k}\ln\left(1+\frac{ku^2}{g}\right)

Explanation

Solution

The net force acting on the ball when moving upward is

F=mgmkv2.F = -mg - m k v^2.

Using vdvdx=dvdtv \frac{dv}{dx} = \frac{dv}{dt}, we have:

vdvdx=gkv2.v \frac{dv}{dx} = -g - k v^2.

Rearrange to separate the variables:

vdvg+kv2=dx.\frac{v\,dv}{g + k v^2} = -dx.

For maximum height HH, integrate from initial speed uu (at x=0x = 0) to velocity 00 (at x=Hx = H):

H=0Hdx=u0vdvg+kv2.H = \int_0^H dx = \int_u^0 \frac{-v\,dv}{g+k v^2}.

Changing the limits we get:

H=0uvdvg+kv2.H = \int_0^u \frac{v\,dv}{g+k v^2}.

Now, substitute w=g+kv2w = g + k v^2 so that dw=2kvdvdw = 2k\,v\,dv which implies vdv=dw2kv\,dv = \frac{dw}{2k}. The limits change as follows:

  • When v=0v=0, w=gw=g.
  • When v=uv=u, w=g+ku2w=g+ku^2.

Thus,

H=12kgg+ku2dww=12k[lnw]gg+ku2=12kln(g+ku2g).H = \frac{1}{2k} \int_{g}^{g+ku^2} \frac{dw}{w} = \frac{1}{2k} \left[\ln w\right]_{g}^{g+ku^2} = \frac{1}{2k}\ln\left(\frac{g+ku^2}{g}\right).

This simplifies to:

H=12kln(1+ku2g).H = \frac{1}{2k}\ln\left(1+\frac{ku^2}{g}\right).

By applying the chain rule vdvdx=gkv2v \frac{dv}{dx} = -g - k v^2 and integrating with the substitution w=g+kv2w = g+kv^2, the maximum height is found to be 12kln(1+ku2g)\frac{1}{2k}\ln\left(1+\frac{ku^2}{g}\right).