Solveeit Logo

Question

Question: A random variable x assumes values 1, 2, 3, ... n with equal probabilities. If the ratio of variance...

A random variable x assumes values 1, 2, 3, ... n with equal probabilities. If the ratio of variance of x to expected value of x is equal to 4, then the value of n is

A

50

B

30

C

25

D

35

Answer

25

Explanation

Solution

For a discrete uniform distribution on {1, 2, …, n}:

E(X)=n+12,Var(X)=n2112E(X)=\frac{n+1}{2}, \quad Var(X)=\frac{n^2-1}{12}

The ratio is:

Var(X)E(X)=n2112n+12=n216(n+1)=(n1)(n+1)6(n+1)=n16\frac{Var(X)}{E(X)} = \frac{\frac{n^2-1}{12}}{\frac{n+1}{2}} = \frac{n^2-1}{6(n+1)} = \frac{(n-1)(n+1)}{6(n+1)} = \frac{n-1}{6}

Setting the ratio equal to 4:

n16=4n1=24n=25\frac{n-1}{6}=4 \quad \Rightarrow \quad n-1=24 \quad \Rightarrow \quad n=25