Solveeit Logo

Question

Question: A continuous function f: [0, 1) → [0, ∞) satisfies $f(\frac{x+1}{2})=f(x)+1$ and $f(1-x)=\frac{1}{f(...

A continuous function f: [0, 1) → [0, ∞) satisfies f(x+12)=f(x)+1f(\frac{x+1}{2})=f(x)+1 and f(1x)=1f(x)x(0,1)f(1-x)=\frac{1}{f(x)} \forall x \in (0,1).

Then TRUE Statement is/are

A

01f(x)dx=32\int_0^1 f(x) dx = \frac{3}{2}

B

01f(x)dx=23\int_0^1 f(x) dx = \frac{2}{3}

C

01f(x)dx=43\int_0^1 f(x) dx = \frac{4}{3}

D

01f(x)dx=34\int_0^1 f(x) dx = \frac{3}{4}

Answer

01f(x)dx=32\int_0^1 f(x) dx = \frac{3}{2}

Explanation

Solution

Let I=01f(x)dxI = \int_0^1 f(x) dx. Using the property 0af(x)dx=0af(ax)dx\int_0^a f(x) dx = \int_0^a f(a-x) dx, we have I=01f(1x)dxI = \int_0^1 f(1-x) dx. Using the given condition f(1x)=1f(x)f(1-x) = \frac{1}{f(x)}, we get I=011f(x)dxI = \int_0^1 \frac{1}{f(x)} dx.

Split the integral II into two parts: I=01/2f(x)dx+1/21f(x)dxI = \int_0^{1/2} f(x) dx + \int_{1/2}^1 f(x) dx.

Consider the second integral 1/21f(x)dx\int_{1/2}^1 f(x) dx. Let x=y+12x = \frac{y+1}{2}, so dx=12dydx = \frac{1}{2} dy. When x=1/2x=1/2, y=0y=0. When x=1x=1, y=1y=1. 1/21f(x)dx=01f(y+12)12dy\int_{1/2}^1 f(x) dx = \int_0^1 f(\frac{y+1}{2}) \frac{1}{2} dy. Using the condition f(y+12)=f(y)+1f(\frac{y+1}{2}) = f(y)+1: 1/21f(x)dx=01(f(y)+1)12dy=1201f(y)dy+12011dy=12I+12\int_{1/2}^1 f(x) dx = \int_0^1 (f(y)+1) \frac{1}{2} dy = \frac{1}{2} \int_0^1 f(y) dy + \frac{1}{2} \int_0^1 1 dy = \frac{1}{2} I + \frac{1}{2}.

Substitute this back into the expression for II: I=01/2f(x)dx+(12I+12)I = \int_0^{1/2} f(x) dx + (\frac{1}{2} I + \frac{1}{2}). This implies 01/2f(x)dx=12I12\int_0^{1/2} f(x) dx = \frac{1}{2} I - \frac{1}{2}.

Now consider the integral 01/2f(x)dx\int_0^{1/2} f(x) dx. Let x=1ux = 1-u, so dx=dudx = -du. When x=0x=0, u=1u=1. When x=1/2x=1/2, u=1/2u=1/2. 01/2f(x)dx=11/2f(1u)(du)=1/21f(1u)du\int_0^{1/2} f(x) dx = \int_1^{1/2} f(1-u) (-du) = \int_{1/2}^1 f(1-u) du. Using f(1u)=1/f(u)f(1-u) = 1/f(u): 01/2f(x)dx=1/211f(u)du\int_0^{1/2} f(x) dx = \int_{1/2}^1 \frac{1}{f(u)} du.

So, 12I12=1/211f(x)dx\frac{1}{2} I - \frac{1}{2} = \int_{1/2}^1 \frac{1}{f(x)} dx.

We also have I=011f(x)dx=01/21f(x)dx+1/211f(x)dxI = \int_0^1 \frac{1}{f(x)} dx = \int_0^{1/2} \frac{1}{f(x)} dx + \int_{1/2}^1 \frac{1}{f(x)} dx. Substitute the expression for 1/211f(x)dx\int_{1/2}^1 \frac{1}{f(x)} dx: I=01/21f(x)dx+(12I12)I = \int_0^{1/2} \frac{1}{f(x)} dx + (\frac{1}{2} I - \frac{1}{2}). This implies 01/21f(x)dx=12I+12\int_0^{1/2} \frac{1}{f(x)} dx = \frac{1}{2} I + \frac{1}{2}.

We have the relations:

  1. 01/2f(x)dx=I212\int_0^{1/2} f(x) dx = \frac{I}{2} - \frac{1}{2}
  2. 1/21f(x)dx=I2+12\int_{1/2}^1 f(x) dx = \frac{I}{2} + \frac{1}{2}
  3. 01/21f(x)dx=I2+12\int_0^{1/2} \frac{1}{f(x)} dx = \frac{I}{2} + \frac{1}{2}
  4. 1/211f(x)dx=I212\int_{1/2}^1 \frac{1}{f(x)} dx = \frac{I}{2} - \frac{1}{2}

Consider the integral 01/2f(x)dx\int_0^{1/2} f(x) dx. Let x=2ux=2u, so dx=2dudx=2du. 01/2f(x)dx=01f(2u)12du\int_0^{1/2} f(x) dx = \int_0^1 f(2u) \frac{1}{2} du. So, 1201f(2u)du=I212\frac{1}{2} \int_0^1 f(2u) du = \frac{I}{2} - \frac{1}{2}. 01f(2u)du=I1\int_0^1 f(2u) du = I - 1.

If we assume I=3/2I = 3/2, then 01f(2u)du=3/21=1/2\int_0^1 f(2u) du = 3/2 - 1 = 1/2. This is consistent with 01/2f(x)dx=3/2212=3412=14\int_0^{1/2} f(x) dx = \frac{3/2}{2} - \frac{1}{2} = \frac{3}{4} - \frac{1}{2} = \frac{1}{4}, and 1/21f(x)dx=3/22+12=34+12=54\int_{1/2}^1 f(x) dx = \frac{3/2}{2} + \frac{1}{2} = \frac{3}{4} + \frac{1}{2} = \frac{5}{4}. And 01/2f(x)dx+1/21f(x)dx=14+54=64=32=I\int_0^{1/2} f(x) dx + \int_{1/2}^1 f(x) dx = \frac{1}{4} + \frac{5}{4} = \frac{6}{4} = \frac{3}{2} = I.

The value I=3/2I=3/2 is consistent with the derived relations.