Solveeit Logo

Question

Chemistry Question on Solutions

2.5g2.5 \, \text{g} of a non-volatile, non-electrolyte is dissolved in 100g100 \, \text{g} of water at 25C25^\circ \text{C}. The solution showed a boiling point elevation by 2C2^\circ \text{C}. Assuming the solute concentration is negligible with respect to the solvent concentration, the vapour pressure of the resulting aqueous solution is ______ mm of Hg (nearest integer).
(Given: Molal boiling point elevation constant of water (KbK_b) = 0.52Kkgmol10.52 \, \text{K} \cdot \text{kg} \cdot \text{mol}^{-1},1 atm pressure = 760mm of Hg760 \, \text{mm of Hg}, molar mass of water = 18g mol118 \, \text{g mol}^{-1})

Answer

Determine the Molality of the Solution:

The boiling point elevation ΔTb\Delta T_b is related to molality (mm) as follows: ΔTb=Kb×m\Delta T_b = K_b \times m

Given:

ΔTb=2C,Kb=0.52K kg mol1\Delta T_b = 2^\circ C, \quad K_b = 0.52 \, \text{K kg mol}^{-1} m=ΔTbKb=20.523.85mol kg1m = \frac{\Delta T_b}{K_b} = \frac{2}{0.52} \approx 3.85 \, \text{mol kg}^{-1}

Calculate the Moles of Solute:

Since molality mm is defined as moles of solute per kilogram of solvent: moles of solute=m×mass of solvent (in kg)\text{moles of solute} = m \times \text{mass of solvent (in kg)} Given that the mass of solvent (water) is 100 g or 0.1 kg: moles of solute=3.85×0.1=0.385moles\text{moles of solute} = 3.85 \times 0.1 = 0.385 \, \text{moles}

Determine the Molar Mass of the Solute:

Given mass of solute = 2.5 g, Molar mass of solute=mass of solutemoles of solute=2.50.3856.49g/mol\text{Molar mass of solute} = \frac{\text{mass of solute}}{\text{moles of solute}} = \frac{2.5}{0.385} \approx 6.49 \, \text{g/mol}

Calculate the Vapour Pressure Lowering:

The vapour pressure lowering ΔP\Delta P is given by: ΔP=P0×moles of solutemoles of solvent\Delta P = P^0 \times \frac{\text{moles of solute}}{\text{moles of solvent}} where P0=760mm HgP^0 = 760 \, \text{mm Hg} and moles of solvent (water) = 100185.56moles.\frac{100}{18} \approx 5.56 \, \text{moles}.

Calculate ΔP\Delta P:

ΔP=760×0.3855.5652.61mm Hg\Delta P = 760 \times \frac{0.385}{5.56} \approx 52.61 \, \text{mm Hg}

Calculate the Vapour Pressure of the Solution:

Psolution=P0ΔP=76052.61707mm HgP_{\text{solution}} = P^0 - \Delta P = 760 - 52.61 \approx 707 \, \text{mm Hg}

Conclusion:

The vapour pressure of the resulting aqueous solution is approximately 707mm Hg707 \, \text{mm Hg}.