Solveeit Logo

Question

Mathematics Question on Sequence and series

21/4.22/8.23/16.24/32......2^{1/4}. 2^{2/8}. 2^{3/16}. 2^{4/32}......\infty is equal to-

A

1

B

2

C

44622

D

44683

Answer

2

Explanation

Solution

Converting all bases into bases of 22 we finally need to find sum of AGP
S=14+28+316+S =\frac{1}{4}+\frac{2}{8}+\frac{3}{16}+\cdots
Dividing by 22
S2=18+216+332+\frac{ S }{2}=\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\cdots
Subtracting
S2=14+18+116+\frac{ S }{2}=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots
Infinite GP
S2=14(112)\frac{S}{2}=\frac{\frac{1}{4}}{\left(1-\frac{1}{2}\right)}
S=1S=1
\therefore the value of the expression is 22