Solveeit Logo

Question

Question: ∫1/x(x^2+1)...

∫1/x(x^2+1)

Answer

ln|x| - 1/2ln(x^2+1) + C

Explanation

Solution

The integral 1x(x2+1)dx\int \frac{1}{x(x^2+1)} dx is solved by partial fraction decomposition. The integrand is split into 1xxx2+1\frac{1}{x} - \frac{x}{x^2+1}. Integrating 1x\frac{1}{x} gives lnx\ln|x|. Integrating xx2+1\frac{x}{x^2+1} uses a substitution u=x2+1u=x^2+1, leading to 12ln(x2+1)\frac{1}{2}\ln(x^2+1). Combining these results yields lnx12ln(x2+1)+C\ln|x| - \frac{1}{2}\ln(x^2+1) + C.