Solveeit Logo

Question

Question: $(1+x^2)(\frac{dy}{dx})+y=e^{\tan^{-1}x}$...

(1+x2)(dydx)+y=etan1x(1+x^2)(\frac{dy}{dx})+y=e^{\tan^{-1}x}

Answer

The solution to the differential equation is:

y=12etan1x+Cetan1xy = \frac{1}{2}e^{\tan^{-1}x} + C e^{-\tan^{-1}x}

Explanation

Solution

The given differential equation is a first-order linear differential equation.

  1. Rewrite the equation in the standard form dydx+P(x)y=Q(x)\frac{dy}{dx} + P(x)y = Q(x) by dividing by (1+x2)(1+x^2).

  2. Identify P(x)=11+x2P(x) = \frac{1}{1+x^2} and Q(x)=etan1x1+x2Q(x) = \frac{e^{\tan^{-1}x}}{1+x^2}.

  3. Calculate the integrating factor IF=eP(x)dx=e11+x2dx=etan1xIF = e^{\int P(x) dx} = e^{\int \frac{1}{1+x^2} dx} = e^{\tan^{-1}x}.

  4. Apply the general solution formula y(IF)=Q(x)(IF)dx+Cy \cdot (IF) = \int Q(x) \cdot (IF) dx + C.

  5. Substitute the expressions for Q(x)Q(x) and IFIF into the formula: yetan1x=etan1x1+x2etan1xdx+Cy \cdot e^{\tan^{-1}x} = \int \frac{e^{\tan^{-1}x}}{1+x^2} \cdot e^{\tan^{-1}x} dx + C.

  6. Simplify the integral to (etan1x)21+x2dx\int \frac{(e^{\tan^{-1}x})^2}{1+x^2} dx.

  7. Use substitution u=tan1xu = \tan^{-1}x, so du=11+x2dxdu = \frac{1}{1+x^2} dx. The integral becomes e2udu=12e2u\int e^{2u} du = \frac{1}{2}e^{2u}.

  8. Substitute back u=tan1xu = \tan^{-1}x to get 12e2tan1x\frac{1}{2}e^{2\tan^{-1}x}.

  9. Equate yetan1x=12e2tan1x+Cy \cdot e^{\tan^{-1}x} = \frac{1}{2}e^{2\tan^{-1}x} + C.

  10. Solve for yy by dividing by etan1xe^{\tan^{-1}x}, yielding y=12etan1x+Cetan1xy = \frac{1}{2}e^{\tan^{-1}x} + C e^{-\tan^{-1}x}.