Solveeit Logo

Question

Question: 1\(\angle 1 + 2\angle 2 + 3\angle 3 + ... + n\angle n\) is equal to...

11+22+33+...+nn\angle 1 + 2\angle 2 + 3\angle 3 + ... + n\angle n is equal to

A

n+1\angle\underline{n + 1}

B

n+1\angle\underline{n + 1} - 1

C

n+1\angle\underline{n + 1} + 1

D

None

Answer

n+1\angle\underline{n + 1} - 1

Explanation

Solution

11+22+33+...+nn1\angle 1 + 2\angle 2 + 3\angle 3 + ... + n\angle n

= r=1nrr6mu=6mur=1n{(r+1)6mu6mu1}6mur\sum_{r = 1}^{n}{r\angle r\mspace{6mu} = \mspace{6mu}\sum_{r = 1}^{n}{\{(r + 1)\mspace{6mu} - \mspace{6mu} 1\}\mspace{6mu}\angle r}}

= r=1n{(r+1)6mur6mu6mur}\sum_{r = 1}^{n}{\{(r + 1)\mspace{6mu}\angle r\mspace{6mu} - \mspace{6mu}\angle r\}}

= r=1n(r+1r)\sum_{r = 1}^{n}{(\angle\underline{r + 1} - \angle r)}.

= (21)6mu+6mu(32)+(43)+...+(n+1n)(\angle 2 - \angle 1)\mspace{6mu} + \mspace{6mu}(\angle 3 - \angle 2) + (\angle 4 - \angle 3) + ... + (\angle\underline{n + 1} - \angle n)

= (n+16mu6mu16mu=6mun+16mu6mu1(\angle\underline{n + 1}\mspace{6mu} - \mspace{6mu}\angle 1\mspace{6mu} = \mspace{6mu}\angle\underline{n + 1}\mspace{6mu} - \mspace{6mu} 1