Solveeit Logo

Question

Question: A galvanometer of resistance 'G' is converted into an ammeter of resistance $\frac{G}{40}$ by connec...

A galvanometer of resistance 'G' is converted into an ammeter of resistance G40\frac{G}{40} by connecting a shunt 'S' to it. The part of main current passing through the shunt is

A

2.5%

B

25%

C

40%

D

97.5%

Answer

97.5%

Explanation

Solution

Let the galvanometer resistance be GG and the shunt resistance be SS. When connected in parallel, the effective resistance is

Reff=GSG+S=G40R_{\text{eff}} = \frac{G\,S}{G+S} = \frac{G}{40}

Solving for SS:

GSG+S=G40SG+S=14040S=G+S39S=GS=G39.\frac{G\,S}{G+S} = \frac{G}{40} \quad\Longrightarrow\quad \frac{S}{G+S} = \frac{1}{40} \quad\Longrightarrow\quad 40S = G+S \quad\Longrightarrow\quad 39S = G \quad\Longrightarrow\quad S = \frac{G}{39}.

For current division in a parallel circuit, the current through the galvanometer IgI_g is:

Ig=ISG+S=IG39G+G39=IG3940G39=I40=2.5%  of I.I_g = I \cdot \frac{S}{G+S} = I \cdot \frac{\frac{G}{39}}{G+\frac{G}{39}} = I \cdot \frac{\frac{G}{39}}{\frac{40G}{39}} = \frac{I}{40} = 2.5\%\; \text{of } I.

Thus, the current through the shunt IsI_s is:

Is=IIg=II40=39I40=97.5%  of I.I_s = I - I_g = I - \frac{I}{40} = \frac{39I}{40} = 97.5\%\; \text{of } I.