Solveeit Logo

Question

Question: The solution of $2^x + 2^{|x|} \geq 2\sqrt{2}$ is...

The solution of 2x+2x222^x + 2^{|x|} \geq 2\sqrt{2} is

A

(,log2(2+1))(-\infty, log_2(\sqrt{2}+1))

B

(0,)(0, \infty)

C

(12,log2(21))(\frac{1}{2},log_2(\sqrt{2}-1))

D

(,log2(21)][12,)(-\infty,log_2(\sqrt{2}-1)] \cup [\frac{1}{2}, \infty)

Answer

(,log2(21)][12,)(-\infty,log_2(\sqrt{2}-1)] \cup [\frac{1}{2}, \infty)

Explanation

Solution

The inequality 2x+2x222^x + 2^{|x|} \geq 2\sqrt{2} is solved by considering two cases: x0x \geq 0 and x<0x < 0.

Case 1: x0x \geq 0 If x0x \geq 0, then x=x|x| = x. The inequality becomes: 2x+2x222^x + 2^x \geq 2\sqrt{2} 22x222 \cdot 2^x \geq 2\sqrt{2} 2x+123/22^{x+1} \geq 2^{3/2} Comparing exponents: x+132    x12x+1 \geq \frac{3}{2} \implies x \geq \frac{1}{2}. The solution for this case is x[12,)x \in [\frac{1}{2}, \infty).

Case 2: x<0x < 0 If x<0x < 0, then x=x|x| = -x. The inequality becomes: 2x+2x222^x + 2^{-x} \geq 2\sqrt{2} Let y=2xy = 2^x. Since x<0x < 0, 0<y<10 < y < 1. The inequality is y+1y22y + \frac{1}{y} \geq 2\sqrt{2}. Multiplying by yy: y2+122y    y222y+10y^2 + 1 \geq 2\sqrt{2}y \implies y^2 - 2\sqrt{2}y + 1 \geq 0. The roots of y222y+1=0y^2 - 2\sqrt{2}y + 1 = 0 are y=2±1y = \sqrt{2} \pm 1. So, y21y \leq \sqrt{2} - 1 or y2+1y \geq \sqrt{2} + 1.

Substituting back y=2xy = 2^x: 2x212^x \leq \sqrt{2} - 1 or 2x2+12^x \geq \sqrt{2} + 1.

For 2x2+12^x \geq \sqrt{2} + 1, we get xlog2(2+1)x \geq \log_2(\sqrt{2} + 1). This contradicts x<0x < 0. For 2x212^x \leq \sqrt{2} - 1, we get xlog2(21)x \leq \log_2(\sqrt{2} - 1). This is consistent with x<0x < 0 as log2(21)<0\log_2(\sqrt{2} - 1) < 0. The solution for this case is x(,log2(21)]x \in (-\infty, \log_2(\sqrt{2} - 1)].

Combining the solutions: The total solution set is the union of the solutions from both cases: (,log2(21)][12,)(-\infty, \log_2(\sqrt{2} - 1)] \cup [\frac{1}{2}, \infty).