Solveeit Logo

Question

Question: The solution of $2^x + 2^{|x|} \geq 2\sqrt{2}$ is...

The solution of 2x+2x222^x + 2^{|x|} \geq 2\sqrt{2} is

A

(,log2(2+1))(-\infty, log_2(\sqrt{2} + 1))

B

(0,)(0, \infty)

C

(12,log2(21))(\frac{1}{2}, log_2(\sqrt{2} - 1))

D

(,log2(21)][12,)(-\infty, log_2(\sqrt{2} - 1)] \cup [\frac{1}{2}, \infty)

Answer

(,log2(21)][12,)(-\infty, log_2(\sqrt{2} - 1)] \cup [\frac{1}{2}, \infty)

Explanation

Solution

  1. Case x0x \geq 0: x=x    2x+2x22    22x22    2x+123/2    x+13/2    x1/2|x|=x \implies 2^x + 2^x \geq 2\sqrt{2} \implies 2 \cdot 2^x \geq 2\sqrt{2} \implies 2^{x+1} \geq 2^{3/2} \implies x+1 \geq 3/2 \implies x \geq 1/2. Solution: [1/2,)[1/2, \infty).
  2. Case x<0x < 0: x=x    2x+2x22|x|=-x \implies 2^x + 2^{-x} \geq 2\sqrt{2}. Let y=2xy=2^x, so 0<y<10<y<1. Inequality becomes y+1/y22    y222y+10y+1/y \geq 2\sqrt{2} \implies y^2 - 2\sqrt{2}y + 1 \geq 0. Roots are 2±1\sqrt{2}\pm 1. So y21y \leq \sqrt{2}-1 or y2+1y \geq \sqrt{2}+1. With 0<y<10<y<1, we get 0<y210<y \leq \sqrt{2}-1. Thus 0<2x21    xlog2(21)0 < 2^x \leq \sqrt{2}-1 \implies x \leq \log_2(\sqrt{2}-1). Solution: (,log2(21)](-\infty, \log_2(\sqrt{2}-1)].
  3. Union of solutions: (,log2(21)][1/2,)(-\infty, \log_2(\sqrt{2}-1)] \cup [1/2, \infty).