Solveeit Logo

Question

Question: Statement-1 : In ∆ABC, tanA = tanB = p and tanC = 2 then number of possible values of 'p' is 1. and...

Statement-1 : In ∆ABC, tanA = tanB = p and tanC = 2 then number of possible values of 'p' is 1.

and

Statement-2 : If tanA + tanB + tanC = tanA. tanB.tanC, then A,B,C are angles of triangle ABC.

A

Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Answer

Statement-1 is True, Statement-2 is False.

Explanation

Solution

Detailed analysis of Statement-1:

Statement-1: In ABC\triangle ABC, tanA=tanB=p\tan A = \tan B = p and tanC=2\tan C = 2 then number of possible values of 'p' is 1.

For angles A,B,CA, B, C of a triangle, their sum is π\pi radians (180180^\circ). A+B+C=πA + B + C = \pi This implies tan(A+B+C)=tan(π)=0\tan(A+B+C) = \tan(\pi) = 0. The general identity for the tangent of a sum of three angles is:

tan(A+B+C)=tanA+tanB+tanCtanAtanBtanC1(tanAtanB+tanBtanC+tanCtanA)\tan(A+B+C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - (\tan A \tan B + \tan B \tan C + \tan C \tan A)}

For tan(A+B+C)=0\tan(A+B+C) = 0, the numerator must be zero (provided the denominator is not zero). Thus, for a triangle (assuming no angle is π/2\pi/2):

tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A \tan B \tan C

Substitute the given values tanA=p\tan A = p, tanB=p\tan B = p, and tanC=2\tan C = 2:

p+p+2=pp2p + p + 2 = p \cdot p \cdot 2 2p+2=2p22p + 2 = 2p^2

Divide the entire equation by 2:

p+1=p2p + 1 = p^2

Rearrange into a standard quadratic equation:

p2p1=0p^2 - p - 1 = 0

Solve for pp using the quadratic formula p=b±b24ac2ap = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}:

p=(1)±(1)24(1)(1)2(1)p = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-1)}}{2(1)} p=1±1+42p = \frac{1 \pm \sqrt{1 + 4}}{2} p=1±52p = \frac{1 \pm \sqrt{5}}{2}

This gives two possible values for pp:

p1=1+52p_1 = \frac{1 + \sqrt{5}}{2}

p2=152p_2 = \frac{1 - \sqrt{5}}{2}

Now, we must check if these values of pp lead to a valid triangle. For A,B,CA, B, C to be angles of a triangle, they must satisfy 0<A,B,C<π0 < A, B, C < \pi. Also, at most one angle can be obtuse (i.e., greater than π/2\pi/2). Given tanC=2\tan C = 2. Since 2>02 > 0, CC must be an acute angle (0<C<π/20 < C < \pi/2). Specifically, C=arctan(2)63.43C = \arctan(2) \approx 63.43^\circ. Given tanA=p\tan A = p and tanB=p\tan B = p, this implies A=BA=B. If pp were negative, then tanA<0\tan A < 0 and tanB<0\tan B < 0. This would mean AA and BB are both obtuse angles (angles between π/2\pi/2 and π\pi). If A>π/2A > \pi/2 and B>π/2B > \pi/2, then A+B>πA+B > \pi. This would make A+B+C>πA+B+C > \pi, which is impossible for a triangle (as C>0C > 0). Therefore, for a valid triangle, pp must be positive.

Let's evaluate the two values of pp:

p1=1+521+2.23621.618p_1 = \frac{1 + \sqrt{5}}{2} \approx \frac{1 + 2.236}{2} \approx 1.618. This value is positive.

p2=15212.23620.618p_2 = \frac{1 - \sqrt{5}}{2} \approx \frac{1 - 2.236}{2} \approx -0.618. This value is negative.

Since pp must be positive, only p=1+52p = \frac{1 + \sqrt{5}}{2} is a valid solution. For this value, tanA=tanB=1+52>0\tan A = \tan B = \frac{1+\sqrt{5}}{2} > 0, so AA and BB are acute angles. Since A,B,CA, B, C are all acute, their sum is less than 3π/23\pi/2. Since the sum is π\pi, this forms a valid triangle. Thus, there is only 1 possible value for 'p'. Statement-1 is True.

Detailed analysis of Statement-2:

Statement-2: If tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C, then A,B,CA, B, C are angles of triangle ABC.

The given condition is tanA+tanB+tanCtanAtanBtanC=0\tan A + \tan B + \tan C - \tan A \tan B \tan C = 0. This is the numerator of the expression for tan(A+B+C)\tan(A+B+C). So, the condition implies tan(A+B+C)=0\tan(A+B+C) = 0, provided the denominator 1(tanAtanB+tanBtanC+tanCtanA)1 - (\tan A \tan B + \tan B \tan C + \tan C \tan A) is not zero. If tan(A+B+C)=0\tan(A+B+C) = 0, then A+B+C=nπA+B+C = n\pi for some integer nn.

For A,B,CA, B, C to be angles of a triangle, they must satisfy two conditions:

  1. 0<A,B,C<π0 < A, B, C < \pi (each angle must be positive and less than 180180^\circ).
  2. A+B+C=πA+B+C = \pi (their sum must be exactly 180180^\circ).

Let's test if the given condition necessarily implies A+B+C=πA+B+C = \pi. Consider a counterexample: Let A=B=C=120A=B=C=120^\circ. In this case, A+B+C=120+120+120=360=2πA+B+C = 120^\circ + 120^\circ + 120^\circ = 360^\circ = 2\pi. These angles do not form a triangle because their sum is 2π2\pi, not π\pi. Now, let's check if they satisfy the given condition: tanA=tan(120)=3\tan A = \tan(120^\circ) = -\sqrt{3} tanB=tan(120)=3\tan B = \tan(120^\circ) = -\sqrt{3} tanC=tan(120)=3\tan C = \tan(120^\circ) = -\sqrt{3} Left Hand Side (LHS) of the condition: tanA+tanB+tanC=(3)+(3)+(3)=33\tan A + \tan B + \tan C = (-\sqrt{3}) + (-\sqrt{3}) + (-\sqrt{3}) = -3\sqrt{3} Right Hand Side (RHS) of the condition: tanAtanBtanC=(3)(3)(3)=(3)(3)=33\tan A \cdot \tan B \cdot \tan C = (-\sqrt{3}) \cdot (-\sqrt{3}) \cdot (-\sqrt{3}) = (3) \cdot (-\sqrt{3}) = -3\sqrt{3} Since LHS = RHS (33=33-3\sqrt{3} = -3\sqrt{3}), the condition tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A \tan B \tan C holds for A=B=C=120A=B=C=120^\circ. However, as shown, these angles do not form a triangle. Therefore, the statement "If tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A \tan B \tan C, then A,B,CA, B, C are angles of triangle ABC" is False.

Conclusion: Statement-1 is True. Statement-2 is False.

This corresponds to option (C).