Solveeit Logo

Question

Question: Prove that the equation to the circle of which the points $(x_1,y_1)$ and $(x_2,y_2)$ are the ends o...

Prove that the equation to the circle of which the points (x1,y1)(x_1,y_1) and (x2,y2)(x_2,y_2) are the ends of a chord of a segment containing an angle θ\theta is (xx1)(xx2)+(yy1)(yy2)=±cotθ[(xx1)(yy2)(xx2)(yy1)]=0(x-x_1)(x-x_2) + (y-y_1)(y-y_2) = \pm \cot \theta [(x-x_1)(y-y_2) - (x-x_2)(y-y_1)] = 0.

Answer

The equation of the circle is (xx1)(xx2)+(yy1)(yy2)=±cotθ[(xx1)(yy2)(xx2)(yy1)](x-x_1)(x-x_2) + (y-y_1)(y-y_2) = \pm \cot \theta [(x-x_1)(y-y_2) - (x-x_2)(y-y_1)].

Explanation

Solution

Let P(x,y)P(x, y) be any point on the circumference of the circle, and let A=(x1,y1)A = (x_1, y_1) and B=(x2,y2)B = (x_2, y_2) be the endpoints of the chord. The angle subtended by the chord ABAB at point PP is APB=θ\angle APB = \theta. The slope of PAPA is mPA=yy1xx1m_{PA} = \frac{y - y_1}{x - x_1} and the slope of PBPB is mPB=yy2xx2m_{PB} = \frac{y - y_2}{x - x_2}. Using the formula for the angle between two lines, tanθ=mPAmPB1+mPAmPB\tan \theta = \left| \frac{m_{PA} - m_{PB}}{1 + m_{PA} m_{PB}} \right|, and simplifying, we get tanθ=(yy1)(xx2)(yy2)(xx1)(xx1)(xx2)+(yy1)(yy2)\tan \theta = \left| \frac{(y - y_1)(x - x_2) - (y - y_2)(x - x_1)}{(x - x_1)(x - x_2) + (y - y_1)(y - y_2)} \right|. Let S=(xx1)(xx2)+(yy1)(yy2)S = (x - x_1)(x - x_2) + (y - y_1)(y - y_2) and N=(yy1)(xx2)(yy2)(xx1)N = (y - y_1)(x - x_2) - (y - y_2)(x - x_1). Then tanθ=NS\tan \theta = \left| \frac{N}{S} \right|, which implies Stanθ=±NS \tan \theta = \pm N. Substituting back the expressions for SS and NN, we get [(xx1)(xx2)+(yy1)(yy2)]tanθ=±[(yy1)(xx2)(yy2)(xx1)][(x - x_1)(x - x_2) + (y - y_1)(y - y_2)] \tan \theta = \pm [(y - y_1)(x - x_2) - (y - y_2)(x - x_1)]. Multiplying by cotθ\cot \theta, we obtain (xx1)(xx2)+(yy1)(yy2)=±cotθ[(yy1)(xx2)(yy2)(xx1)](x - x_1)(x - x_2) + (y - y_1)(y - y_2) = \pm \cot \theta [(y - y_1)(x - x_2) - (y - y_2)(x - x_1)]. The term (xx1)(yy2)(xx2)(yy1)(x-x_1)(y-y_2) - (x-x_2)(y-y_1) is related to the signed area. The equation can be written as (xx1)(xx2)+(yy1)(yy2)=±cotθ[(xx1)(yy2)(xx2)(yy1)](x-x_1)(x-x_2) + (y-y_1)(y-y_2) = \pm \cot \theta [(x-x_1)(y-y_2) - (x-x_2)(y-y_1)]. The ±\pm sign accounts for the two possible segments where the angle θ\theta can be subtended.