Question
Question: Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three non-coplanar vectors and $...
Let a,b,c be three non-coplanar vectors and r be any arbitrary vector, then the expression (a×b)×(r×c)+(b×c)×(r×a)+(c×a)×(r×b) is always equal to:

A
[abc]r
B
2[abc]r
C
4[abc]r
D
0
Answer
2[a b c]r
Explanation
Solution
The given expression is E=(a×b)×(r×c)+(b×c)×(r×a)+(c×a)×(r×b).
Using the vector triple product identity P×(Q×R)=(P⋅R)Q−(P⋅Q)R:
Term 1: (a×b)×(r×c)=((a×b)⋅c)r−((a×b)⋅r)c=[abc]r−[abr]c.
Term 2: (b×c)×(r×a)=((b×c)⋅a)r−((b×c)⋅r)a=[abc]r−[bcr]a.
Term 3: (c×a)×(r×b)=((c×a)⋅b)r−((c×a)⋅r)b=[abc]r−[car]b.
Adding the three terms: E=3[abc]r−([abr]c+[bcr]a+[car]b).
Using the identity [abc]r=[rbc]a+[rca]b+[rab]c=[bcr]a+[car]b+[abr]c, the term in parenthesis is equal to [abc]r.
Therefore, E=3[abc]r−[abc]r=2[abc]r.