Solveeit Logo

Question

Question: In the given figure $PQR$ is an equilateral triangle and $OSPT$ is a square. If $OT = 2\sqrt{2}$ uni...

In the given figure PQRPQR is an equilateral triangle and OSPTOSPT is a square. If OT=22OT = 2\sqrt{2} units, find the equation of lines OTOT, OSOS, SPSP, QRQR, PRPR, and PQPQ.

Answer

Line OTOT: y=xy = x, Line OSOS: y=xy = -x, Line SPSP: y=x+4y = x+4, Line QRQR: y=(2+3)(x4)y = (2+\sqrt{3})(x-4), Line PRPR: y=(23)x+4y = (2-\sqrt{3})x+4, Line PQPQ: y=x+4y = -x+4

Explanation

Solution

  1. Square Vertices: Given OT=22OT = 2\sqrt{2} and OSPTOSPT is a square with OO at the origin.

    • T=(22cos45,22sin45)=(2,2)T = (2\sqrt{2} \cos 45^\circ, 2\sqrt{2} \sin 45^\circ) = (2,2).
    • S=(22cos135,22sin135)=(2,2)S = (2\sqrt{2} \cos 135^\circ, 2\sqrt{2} \sin 135^\circ) = (-2,2).
    • P=S+T=(2,2)+(2,2)=(0,4)P = S + T = (-2,2) + (2,2) = (0,4).
  2. Square Lines:

    • OTOT: Passes through (0,0)(0,0) and (2,2)(2,2). Equation: y=xy=x.
    • OSOS: Passes through (0,0)(0,0) and (2,2)(-2,2). Equation: y=xy=-x.
    • SPSP: Passes through S(2,2)S(-2,2) and P(0,4)P(0,4). Slope mSP=420(2)=1m_{SP} = \frac{4-2}{0-(-2)} = 1. Equation: y4=1(x0)y=x+4y-4 = 1(x-0) \Rightarrow y=x+4.
  3. Equilateral Triangle Lines: P=(0,4)P=(0,4).

    • PQRPQR is equilateral. From the figure, the line PRPR makes an angle of 1515^\circ with the XX-axis.
    • Slope of PRPR: mPR=tan15=23m_{PR} = \tan 15^\circ = 2-\sqrt{3}.
    • Equation of PRPR: y4=(23)xy=(23)x+4y-4 = (2-\sqrt{3})x \Rightarrow y = (2-\sqrt{3})x+4.
    • The angle of PQPQ with XX-axis is 1560=4515^\circ - 60^\circ = -45^\circ.
    • Slope of PQPQ: mPQ=tan(45)=1m_{PQ} = \tan (-45^\circ) = -1.
    • Equation of PQPQ: y4=1xy=x+4y-4 = -1x \Rightarrow y = -x+4.
    • If QQ is on the XX-axis (yQ=0y_Q=0), then 0=xQ+4xQ=40=-x_Q+4 \Rightarrow x_Q=4. So Q=(4,0)Q=(4,0).
    • The angle of QRQR with the XX-axis is 7575^\circ.
    • Slope of QRQR: mQR=tan75=2+3m_{QR} = \tan 75^\circ = 2+\sqrt{3}.
    • Equation of QRQR: y0=(2+3)(x4)y=(2+3)(x4)y-0 = (2+\sqrt{3})(x-4) \Rightarrow y = (2+\sqrt{3})(x-4).

The equations of the lines are:

  • Line OTOT: y=xy = x
  • Line OSOS: y=xy = -x
  • Line SPSP: y=x+4y = x+4
  • Line QRQR: y=(2+3)(x4)y = (2+\sqrt{3})(x-4)
  • Line PRPR: y=(23)x+4y = (2-\sqrt{3})x+4
  • Line PQPQ: y=x+4y = -x+4