Question
Question: In the given figure $PQR$ is an equilateral triangle and $OSPT$ is a square. If $OT = 2\sqrt{2}$ uni...
In the given figure PQR is an equilateral triangle and OSPT is a square. If OT=22 units, find the equation of lines OT, OS, SP, QR, PR, and PQ.

Answer
Line OT: y=x, Line OS: y=−x, Line SP: y=x+4, Line QR: y=(2+3)(x−4), Line PR: y=(2−3)x+4, Line PQ: y=−x+4
Explanation
Solution
-
Square Vertices: Given OT=22 and OSPT is a square with O at the origin.
- T=(22cos45∘,22sin45∘)=(2,2).
- S=(22cos135∘,22sin135∘)=(−2,2).
- P=S+T=(−2,2)+(2,2)=(0,4).
-
Square Lines:
- OT: Passes through (0,0) and (2,2). Equation: y=x.
- OS: Passes through (0,0) and (−2,2). Equation: y=−x.
- SP: Passes through S(−2,2) and P(0,4). Slope mSP=0−(−2)4−2=1. Equation: y−4=1(x−0)⇒y=x+4.
-
Equilateral Triangle Lines: P=(0,4).
- PQR is equilateral. From the figure, the line PR makes an angle of 15∘ with the X-axis.
- Slope of PR: mPR=tan15∘=2−3.
- Equation of PR: y−4=(2−3)x⇒y=(2−3)x+4.
- The angle of PQ with X-axis is 15∘−60∘=−45∘.
- Slope of PQ: mPQ=tan(−45∘)=−1.
- Equation of PQ: y−4=−1x⇒y=−x+4.
- If Q is on the X-axis (yQ=0), then 0=−xQ+4⇒xQ=4. So Q=(4,0).
- The angle of QR with the X-axis is 75∘.
- Slope of QR: mQR=tan75∘=2+3.
- Equation of QR: y−0=(2+3)(x−4)⇒y=(2+3)(x−4).
The equations of the lines are:
- Line OT: y=x
- Line OS: y=−x
- Line SP: y=x+4
- Line QR: y=(2+3)(x−4)
- Line PR: y=(2−3)x+4
- Line PQ: y=−x+4
