Solveeit Logo

Question

Question: In the figure, potential difference between A and B is:...

In the figure, potential difference between A and B is:

A

10 V

B

5 V

C

15 V

D

zero

Answer

10 V

Explanation

Solution

Set the potential at point B to 0 V (VB=0V_B = 0). The voltage source is 30 V, so the potential at its positive terminal is 30 V. Let's denote the node before R1 as P, so VP=30V_P = 30 V. Applying KCL at node A: Current through R1 (IR1I_{R1}) + Current through diode (IDI_D) = Current through R2 (IR2I_{R2}) VPVAR1+ID=VAVBR2\frac{V_P - V_A}{R1} + I_D = \frac{V_A - V_B}{R2} 30VA10 kΩ+ID=VA010 kΩ\frac{30 - V_A}{10 \text{ kΩ}} + I_D = \frac{V_A - 0}{10 \text{ kΩ}} For an ideal diode, if it conducts, VA=VDV_A = V_D and ID>0I_D > 0. If it doesn't conduct, ID=0I_D = 0 and VA<VDV_A < V_D. Assume the diode conducts: VA=VDV_A = V_D. The current through R3 is IR3=VDVBR3=VA010 kΩI_{R3} = \frac{V_D - V_B}{R3} = \frac{V_A - 0}{10 \text{ kΩ}}. Since ID=IR3I_D = I_{R3} (KCL at D), ID=VA10 kΩI_D = \frac{V_A}{10 \text{ kΩ}}. Substituting into the KCL at A: 30VA10 kΩ+VA10 kΩ=VA10 kΩ\frac{30 - V_A}{10 \text{ kΩ}} + \frac{V_A}{10 \text{ kΩ}} = \frac{V_A}{10 \text{ kΩ}} 30VA+VA=VA30 - V_A + V_A = V_A 30=2VA    VA=15 V30 = 2V_A \implies V_A = 15 \text{ V} If VA=15V_A = 15 V, then VD=15V_D = 15 V. ID=15 V10 kΩ=1.5I_D = \frac{15 \text{ V}}{10 \text{ kΩ}} = 1.5 mA. Check KCL at A: IR1=301510=1.5I_{R1} = \frac{30-15}{10} = 1.5 mA. IR2=15010=1.5I_{R2} = \frac{15-0}{10} = 1.5 mA. 1.5 mA+1.5 mA1.5 mA1.5 \text{ mA} + 1.5 \text{ mA} \neq 1.5 \text{ mA}. This assumption is incorrect.

Let's re-evaluate the circuit diagram. The voltage source is connected such that its positive terminal is at the top, and the negative terminal is at B. So, Vsource=VtopVbottom=30V_{source} = V_{top} - V_{bottom} = 30 V. If VB=0V_B = 0, then Vbottom=0V_{bottom} = 0. This means Vtop=30V_{top} = 30 V. The node before R1 is VtopV_{top}, so VP=30V_P = 30 V. KCL at node A: VPVAR1=VAVBR2+Idiode\frac{V_P - V_A}{R1} = \frac{V_A - V_B}{R2} + I_{diode} 30VA10 kΩ=VA010 kΩ+Idiode\frac{30 - V_A}{10 \text{ kΩ}} = \frac{V_A - 0}{10 \text{ kΩ}} + I_{diode} Assume diode conducts (VA=VDV_A = V_D): Idiode=VDVBR3=VA010 kΩI_{diode} = \frac{V_D - V_B}{R3} = \frac{V_A - 0}{10 \text{ kΩ}}. 30VA10 kΩ=VA10 kΩ+VA10 kΩ\frac{30 - V_A}{10 \text{ kΩ}} = \frac{V_A}{10 \text{ kΩ}} + \frac{V_A}{10 \text{ kΩ}} 30VA=VA+VA30 - V_A = V_A + V_A 30=3VA    VA=10 V30 = 3V_A \implies V_A = 10 \text{ V} If VA=10V_A = 10 V, then VD=10V_D = 10 V. Idiode=10 V10 kΩ=1I_{diode} = \frac{10 \text{ V}}{10 \text{ kΩ}} = 1 mA. This is >0>0, so the diode conducts. IR1=301010=2I_{R1} = \frac{30-10}{10} = 2 mA. IR2=10010=1I_{R2} = \frac{10-0}{10} = 1 mA. KCL at A: IR1=IR2+Idiode    2 mA=1 mA+1 mAI_{R1} = I_{R2} + I_{diode} \implies 2 \text{ mA} = 1 \text{ mA} + 1 \text{ mA}. This is consistent. Therefore, VA=10V_A = 10 V. The potential difference between A and B is VAB=VAVB=10 V0 V=10V_{AB} = V_A - V_B = 10 \text{ V} - 0 \text{ V} = 10 V.