Solveeit Logo

Question

Question: If the vectors $a = 2i + pj + 4k$ and $b = 6i - 9j + qk$ are collinear then p and q are...

If the vectors a=2i+pj+4ka = 2i + pj + 4k and b=6i9j+qkb = 6i - 9j + qk are collinear then p and q are

A

p=3,q=12p = 3, q = -12

B

p=3,q=21p = 3, q = 21

C

p=3,q=12p = -3, q = 12

D

p=3,q=12p = -3, q = -12

Answer

Option (c) p=3,q=12p = -3, q = 12.

Explanation

Solution

Vectors a and b are collinear, so there exists a scalar λ\lambda such that:

6i9j+qk=λ(2i+pj+4k)6i - 9j + qk = \lambda(2i + pj + 4k)

Comparing the components:

  • ii-component: 6=2λ    λ=36 = 2\lambda \implies \lambda = 3.
  • jj-component: 9=λp    9=3p    p=3-9 = \lambda p \implies -9 = 3p \implies p = -3.
  • kk-component: q=4λ    q=4×3=12q = 4\lambda \implies q = 4 \times 3 = 12.