Question
Question: If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-2}{1} = \frac{y+m}{2} = \f...
If the lines 2x−1=3y+1=4z−1 and 1x−2=2y+m=1z−2 intersect each other, then of m is

A
1
B
-2
C
2
D
- 1
Answer
m = -1
Explanation
Solution
Let parameter t for the first line:
x=1+2t,y=−1+3t,z=1+4t.Let parameter s for the second line:
x=2+s,y=2s−m,z=2+s.For the lines to intersect, equate corresponding coordinates.
-
From x-coordinates:
1+2t=2+s⟹s=2t−1. -
From z-coordinates:
1+4t=2+s⟹1+4t=2+(2t−1)⟹1+4t=2t+1.This gives 4t=2t and hence t=0.
-
Substitute t=0 into s=2t−1:
s=−1. -
Equate y-coordinates:
−1+3(0)=2(−1)−m⟹−1=−2−m⟹m=−1+2=−1.