Solveeit Logo

Question

Question: If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-2}{1} = \frac{y+m}{2} = \f...

If the lines x12=y+13=z14\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4} and x21=y+m2=z21\frac{x-2}{1} = \frac{y+m}{2} = \frac{z-2}{1} intersect each other, then of mm is

A

1

B

-2

C

2

D
  • 1
Answer

m = -1

Explanation

Solution

Let parameter tt for the first line:

x=1+2t,y=1+3t,z=1+4t.x=1+2t,\quad y=-1+3t,\quad z=1+4t.

Let parameter ss for the second line:

x=2+s,y=2sm,z=2+s.x=2+s,\quad y=2s-m,\quad z=2+s.

For the lines to intersect, equate corresponding coordinates.

  1. From xx-coordinates:

    1+2t=2+s    s=2t1.1+2t=2+s \implies s=2t-1.
  2. From zz-coordinates:

    1+4t=2+s    1+4t=2+(2t1)    1+4t=2t+1.1+4t=2+s \implies 1+4t=2+(2t-1) \implies 1+4t=2t+1.

    This gives 4t=2t4t=2t and hence t=0t=0.

  3. Substitute t=0t=0 into s=2t1s=2t-1:

    s=1.s=-1.
  4. Equate yy-coordinates:

    1+3(0)=2(1)m    1=2m    m=1+2=1.-1+3(0)=2(-1)-m \implies -1=-2-m \implies m=-1+2= -1.