Solveeit Logo

Question

Question: A composite spherical shell of radius r = 10 cm and wall thickness t = 0.1 mm is made of copper exce...

A composite spherical shell of radius r = 10 cm and wall thickness t = 0.1 mm is made of copper except and equatorial strip of width b = 0.2 cm, which is made of aluminium. When the poles of the sphere are connected across an ideal battery of terminal voltage V = 0.1 mV, a current I = 5.12 A flows through it. If the aluminium strip is replaced by an iron strip of identical dimensions and the experiment is repeated with the same battery, what current will flow through the battery? Resistivities of aluminium and iron are ρAl\rho_{Al} = 0.03 Ω\Omega-mm²/m and ρFe\rho_{Fe} = 0.01 Ω\Omega-mm²/m.

Answer

5.29 A

Explanation

Solution

The problem describes a composite spherical shell made of copper with an equatorial strip of aluminium. Current flows from pole to pole when connected to a battery. This implies that the copper parts (two spherical caps) and the equatorial strip are connected in series along any meridional path. Since the current distributes itself over the entire surface, the effective resistance of the copper parts and the equatorial strip add up.

Let RCR_C be the resistance of the copper part and RstripR_{strip} be the resistance of the equatorial strip. The total resistance of the shell is Rtotal=RC+RstripR_{total} = R_C + R_{strip}.

The resistance of a conductor is given by R=ρLAR = \rho \frac{L}{A}, where ρ\rho is the resistivity, LL is the length, and AA is the cross-sectional area.

For the equatorial strip, the current flows across its width bb. So, the length Lstrip=bL_{strip} = b. The cross-sectional area for the current flow is the circumference of the sphere at the equator multiplied by the wall thickness tt. Astrip=(2πr)×tA_{strip} = (2\pi r) \times t.

Given values: Radius r=10 cm=0.1 mr = 10 \text{ cm} = 0.1 \text{ m} Wall thickness t=0.1 mm=0.1×103 mt = 0.1 \text{ mm} = 0.1 \times 10^{-3} \text{ m} Strip width b=0.2 cm=0.2×102 mb = 0.2 \text{ cm} = 0.2 \times 10^{-2} \text{ m} Terminal voltage V=0.1 mV=0.1×103 V=104 VV = 0.1 \text{ mV} = 0.1 \times 10^{-3} \text{ V} = 10^{-4} \text{ V} Initial current I1=5.12 AI_1 = 5.12 \text{ A} Resistivity of aluminium ρAl=0.03Ωmm2/m=0.03×(103 m)2/m=0.03×106Ωm\rho_{Al} = 0.03 \Omega \cdot \text{mm}^2/\text{m} = 0.03 \times (10^{-3} \text{ m})^2 / \text{m} = 0.03 \times 10^{-6} \Omega \cdot \text{m} Resistivity of iron ρFe=0.01Ωmm2/m=0.01×106Ωm\rho_{Fe} = 0.01 \Omega \cdot \text{mm}^2/\text{m} = 0.01 \times 10^{-6} \Omega \cdot \text{m}

Step 1: Calculate the cross-sectional area of the strip. Astrip=2πrt=2π(0.1 m)(0.1×103 m)=2π×105 m2A_{strip} = 2\pi r t = 2\pi (0.1 \text{ m}) (0.1 \times 10^{-3} \text{ m}) = 2\pi \times 10^{-5} \text{ m}^2.

Step 2: Calculate the resistance of the aluminium strip (RAlR_{Al}). RAl=ρAlbAstripR_{Al} = \rho_{Al} \frac{b}{A_{strip}} RAl=(0.03×106Ωm)0.2×102 m2π×105 m2R_{Al} = (0.03 \times 10^{-6} \Omega \cdot \text{m}) \frac{0.2 \times 10^{-2} \text{ m}}{2\pi \times 10^{-5} \text{ m}^2} RAl=0.03×0.2×1082π×105Ω=0.0062π×103Ω=0.003π×103ΩR_{Al} = \frac{0.03 \times 0.2 \times 10^{-8}}{2\pi \times 10^{-5}} \Omega = \frac{0.006}{2\pi} \times 10^{-3} \Omega = \frac{0.003}{\pi} \times 10^{-3} \Omega.

Step 3: Calculate the total initial resistance (Rtotal,1R_{total,1}). Using Ohm's law, Rtotal,1=VI1R_{total,1} = \frac{V}{I_1}. Rtotal,1=104 V5.12 A=151200Ω1.953125×105ΩR_{total,1} = \frac{10^{-4} \text{ V}}{5.12 \text{ A}} = \frac{1}{51200} \Omega \approx 1.953125 \times 10^{-5} \Omega.

Step 4: Calculate the resistance of the copper part (RCR_C). Rtotal,1=RC+RAlR_{total,1} = R_C + R_{Al} RC=Rtotal,1RAlR_C = R_{total,1} - R_{Al} RC=1.953125×105Ω0.003π×103ΩR_C = 1.953125 \times 10^{-5} \Omega - \frac{0.003}{\pi} \times 10^{-3} \Omega RC=1.953125×105Ω3π×106ΩR_C = 1.953125 \times 10^{-5} \Omega - \frac{3}{\pi} \times 10^{-6} \Omega RC1.953125×105Ω0.95493×106ΩR_C \approx 1.953125 \times 10^{-5} \Omega - 0.95493 \times 10^{-6} \Omega RC19.53125×106Ω0.95493×106ΩR_C \approx 19.53125 \times 10^{-6} \Omega - 0.95493 \times 10^{-6} \Omega RC18.57632×106ΩR_C \approx 18.57632 \times 10^{-6} \Omega.

Step 5: Calculate the resistance of the iron strip (RFeR_{Fe}). The iron strip has identical dimensions as the aluminium strip. RFe=ρFebAstripR_{Fe} = \rho_{Fe} \frac{b}{A_{strip}} RFe=(0.01×106Ωm)0.2×102 m2π×105 m2R_{Fe} = (0.01 \times 10^{-6} \Omega \cdot \text{m}) \frac{0.2 \times 10^{-2} \text{ m}}{2\pi \times 10^{-5} \text{ m}^2} RFe=0.01×0.2×1082π×105Ω=0.0022π×103Ω=0.001π×103ΩR_{Fe} = \frac{0.01 \times 0.2 \times 10^{-8}}{2\pi \times 10^{-5}} \Omega = \frac{0.002}{2\pi} \times 10^{-3} \Omega = \frac{0.001}{\pi} \times 10^{-3} \Omega.

Step 6: Calculate the new total resistance (Rtotal,2R_{total,2}). Rtotal,2=RC+RFeR_{total,2} = R_C + R_{Fe} Rtotal,2=(1.953125×1053π×106)Ω+1π×106ΩR_{total,2} = \left(1.953125 \times 10^{-5} - \frac{3}{\pi} \times 10^{-6}\right) \Omega + \frac{1}{\pi} \times 10^{-6} \Omega Rtotal,2=1.953125×105Ω2π×106ΩR_{total,2} = 1.953125 \times 10^{-5} \Omega - \frac{2}{\pi} \times 10^{-6} \Omega Rtotal,21.953125×105Ω0.63662×106ΩR_{total,2} \approx 1.953125 \times 10^{-5} \Omega - 0.63662 \times 10^{-6} \Omega Rtotal,218.89463×106ΩR_{total,2} \approx 18.89463 \times 10^{-6} \Omega.

Step 7: Calculate the new current (I2I_2). I2=VRtotal,2I_2 = \frac{V}{R_{total,2}} I2=104 V1.889463×105ΩI_2 = \frac{10^{-4} \text{ V}}{1.889463 \times 10^{-5} \Omega} I2=100×10618.89463×106 A=10018.89463 AI_2 = \frac{100 \times 10^{-6}}{18.89463 \times 10^{-6}} \text{ A} = \frac{100}{18.89463} \text{ A} I25.2926 AI_2 \approx 5.2926 \text{ A}.

Rounding to two decimal places, I25.29 AI_2 \approx 5.29 \text{ A}.

Explanation of the solution: The composite spherical shell's resistance is modeled as the sum of the resistance of the copper parts and the resistance of the equatorial strip, connected in series. The resistance of the strip is calculated using R=ρL/AR = \rho L/A, where LL is the strip width and AA is its cross-sectional area (2πrt2\pi r t).

  1. Calculate the cross-sectional area of the equatorial strip.
  2. Calculate the resistance of the aluminium strip using its resistivity and dimensions.
  3. Determine the total initial resistance of the composite shell using Ohm's law (Rtotal,1=V/I1R_{total,1} = V/I_1).
  4. Subtract the resistance of the aluminium strip from the total initial resistance to find the resistance of the copper part (RC=Rtotal,1RAlR_C = R_{total,1} - R_{Al}).
  5. Calculate the resistance of the iron strip using its resistivity and the same dimensions.
  6. Add the resistance of the copper part and the iron strip to find the new total resistance (Rtotal,2=RC+RFeR_{total,2} = R_C + R_{Fe}).
  7. Calculate the new current using Ohm's law (I2=V/Rtotal,2I_2 = V/R_{total,2}).