Solveeit Logo

Question

Chemistry Question on Solutions

19.5 g of CH2FCOOHCH_2 FCOOH is dissolved in 500 g of water. The depression in the freezing point of water observed is 1.00C1.00\degree C. Calculate the van’t Hoff factor and dissociation constant of fluoroacetic acid.

Answer

The correct answer is: 3.07×1033.07 \times 10^{-3}
It is given that:
w=500gw_₁ = 500 g
w=19.5gw_₂ =19.5g
Kf=1.86Kkgmol1K_f= 1.86 K\, kg mol^{-1}
ΔTf=1KΔT_f=1K
We know that:
M2=Kf×w2×1000ΔTf×w1M_2= \frac{K_f \times w_2 \times 1000}{ ΔT_f \times w_1}
=1.86Kkgmol1×19.5g×1000gkg1500g×1K=\frac{1.86K\, kg mol^{-1} \times 19.5g \times 1000 g kg^{-1}}{500g \times 1K}
=72.54gmol1= 72.54 g mol^{-1}
Therefore, observed molar mass of CH2FCOOH,(M2)obs=72.54gmolCH_2FCOOH,(M_2)obs=72.54gmol
The calculated molar mass of CH2FCOOHCH_2FCOOH is
(M2)cal=14+19+12+16+16+1(M_2)cal=14+19+12+16 +16 +1
=78gmol1= 78 g mol^{-1}
Therefore, van't Hoff factor. i=(M2)cal(M2)obsi=\frac{(M_2)cal}{(M_2)obs}
78gmol172.54gmol1\frac{78 g mol^{-1}}{72.54 g mol^{-1}}
= 1.0753
Let abe the degree of dissociation of CH2FCOOHCH_2FCOOH
CH2FCOOHCH2FCOO+H+CH_2FCOOH↔CH_2FCOO^- +H^+
Initial conc. Cmol1Cmol^{-1} 0 0
At equilibrium C(1α)C(1-α) Cα Cα Total=C(1+α)=C(1+α)
i=C(1+α)C∴i=\frac{C(1+α) }{C}
i=1+α⇒i=1+α
α=i1⇒α=i-1
=1.0753-1
=0.0753
Now, the value of KaK_a is given as:
Ka=[CH2FCOO][H+][CH2FCOOH]K_a=\frac{[CH_2FCOO^-][H^+]}{[CH^2FCOOH]}
=Cα.CαC(1α)=\frac{Cα.Cα}{C(1-α)}
=Cα21α=\frac{Cα^2}{1-α}
Taking the volume of the solution as 500 mL, we have the concentration:
C=19.578500×1000MC=\frac{\frac{19.5}{78}}{500} \times 1000M
=0.5M
Therefore, Ka=Cα21αK_a=\frac{Cα^2}{1-α}
=0.5×(0.0753)210.0753=\frac{0.5 \times (0.0753)^2}{1-0.0753}
=0.5×0.005670.9247=\frac{0.5 \times 0.00567}{0.9247}
=0.00307(approximately)
=3.07×103=3.07 \times 10^{-3}