Solveeit Logo

Question

Question: 250 mL of a solution containing 0.6625 g of sodium carbonate and 2.8000 g of potassium hydroxide is ...

250 mL of a solution containing 0.6625 g of sodium carbonate and 2.8000 g of potassium hydroxide is titrated against N/10HCl. Find out the value of x-y, where x and y are titre value (in mL) with methyl orange and phenolphthalein, respectively, taking 20 mL of above solution each time. (Given: Atomic mass in amu of Na = 23, C = 12, O = 16, K = 39, H = 1, Cl = 35.5)

Answer

5

Explanation

Solution

The solution contains sodium carbonate (Na2CO3\text{Na}_2\text{CO}_3) and potassium hydroxide (KOH\text{KOH}). This is a mixture of a weak base and a strong base. We need to determine the titre values with phenolphthalein and methyl orange indicators.

1. Calculate Moles of Components in the 20 mL Aliquot:

  • Molar mass of Na2CO3\text{Na}_2\text{CO}_3: 2(23)+12+3(16)=46+12+48=106 g/mol2(23) + 12 + 3(16) = 46 + 12 + 48 = 106 \text{ g/mol}

  • Molar mass of KOH\text{KOH}: 39+16+1=56 g/mol39 + 16 + 1 = 56 \text{ g/mol}

  • Moles of Na2CO3\text{Na}_2\text{CO}_3 in 250 mL solution: Moles=MassMolar Mass=0.6625 g106 g/mol=0.00625 mol\text{Moles} = \frac{\text{Mass}}{\text{Molar Mass}} = \frac{0.6625 \text{ g}}{106 \text{ g/mol}} = 0.00625 \text{ mol}

  • Moles of KOH\text{KOH} in 250 mL solution: Moles=MassMolar Mass=2.8000 g56 g/mol=0.05 mol\text{Moles} = \frac{\text{Mass}}{\text{Molar Mass}} = \frac{2.8000 \text{ g}}{56 \text{ g/mol}} = 0.05 \text{ mol}

  • Moles of Na2CO3\text{Na}_2\text{CO}_3 in 20 mL aliquot: Moles20 mL=0.00625 mol×20 mL250 mL=0.00625×0.08=0.0005 mol\text{Moles}_{20 \text{ mL}} = 0.00625 \text{ mol} \times \frac{20 \text{ mL}}{250 \text{ mL}} = 0.00625 \times 0.08 = 0.0005 \text{ mol}

  • Moles of KOH\text{KOH} in 20 mL aliquot: Moles20 mL=0.05 mol×20 mL250 mL=0.05×0.08=0.004 mol\text{Moles}_{20 \text{ mL}} = 0.05 \text{ mol} \times \frac{20 \text{ mL}}{250 \text{ mL}} = 0.05 \times 0.08 = 0.004 \text{ mol}

The titrant is N/10 HCl\text{N/10 HCl}, which means its normality is 0.1 N0.1 \text{ N}.

2. Titration with Phenolphthalein Indicator (Titre value = y mL):

Phenolphthalein changes color when the solution pH is around 8.2-10. This indicates the completion of the following reactions:

  • Strong base (KOH\text{KOH}) reacts completely: KOH+HClKCl+H2O\text{KOH} + \text{HCl} \rightarrow \text{KCl} + \text{H}_2\text{O} (1 mole KOH\text{KOH} consumes 1 mole HCl\text{HCl}, n-factor for KOH\text{KOH} is 1)
  • Weak base (Na2CO3\text{Na}_2\text{CO}_3) reacts partially to form bicarbonate: Na2CO3+HClNaHCO3+NaCl\text{Na}_2\text{CO}_3 + \text{HCl} \rightarrow \text{NaHCO}_3 + \text{NaCl} (1 mole Na2CO3\text{Na}_2\text{CO}_3 consumes 1 mole HCl\text{HCl}, n-factor for Na2CO3\text{Na}_2\text{CO}_3 in this step is 1)

Total equivalents of HCl\text{HCl} required for phenolphthalein endpoint: Equivalentsphenolphthalein=(Moles of KOH×1)+(Moles of Na2CO3×1)\text{Equivalents}_{\text{phenolphthalein}} = (\text{Moles of KOH} \times 1) + (\text{Moles of Na}_2\text{CO}_3 \times 1) Equivalentsphenolphthalein=(0.004 mol×1)+(0.0005 mol×1)\text{Equivalents}_{\text{phenolphthalein}} = (0.004 \text{ mol} \times 1) + (0.0005 \text{ mol} \times 1) Equivalentsphenolphthalein=0.004+0.0005=0.0045 eq\text{Equivalents}_{\text{phenolphthalein}} = 0.004 + 0.0005 = 0.0045 \text{ eq}

Volume of HCl\text{HCl} (y) = EquivalentsNormality of HCl=0.0045 eq0.1 N=0.045 L=45 mL\frac{\text{Equivalents}}{\text{Normality of HCl}} = \frac{0.0045 \text{ eq}}{0.1 \text{ N}} = 0.045 \text{ L} = 45 \text{ mL} So, y=45 mL\text{y} = 45 \text{ mL}.

3. Titration with Methyl Orange Indicator (Titre value = x mL):

Methyl orange changes color when the solution pH is around 3.1-4.4. This indicates the completion of the following reactions:

  • Strong base (KOH\text{KOH}) reacts completely: KOH+HClKCl+H2O\text{KOH} + \text{HCl} \rightarrow \text{KCl} + \text{H}_2\text{O} (1 mole KOH\text{KOH} consumes 1 mole HCl\text{HCl}, n-factor for KOH\text{KOH} is 1)
  • Weak base (Na2CO3\text{Na}_2\text{CO}_3) reacts completely to form carbonic acid: Na2CO3+2HClH2CO3+2NaCl\text{Na}_2\text{CO}_3 + 2\text{HCl} \rightarrow \text{H}_2\text{CO}_3 + 2\text{NaCl} (1 mole Na2CO3\text{Na}_2\text{CO}_3 consumes 2 moles HCl\text{HCl}, n-factor for Na2CO3\text{Na}_2\text{CO}_3 in this step is 2)

Total equivalents of HCl\text{HCl} required for methyl orange endpoint: Equivalentsmethyl orange=(Moles of KOH×1)+(Moles of Na2CO3×2)\text{Equivalents}_{\text{methyl orange}} = (\text{Moles of KOH} \times 1) + (\text{Moles of Na}_2\text{CO}_3 \times 2) Equivalentsmethyl orange=(0.004 mol×1)+(0.0005 mol×2)\text{Equivalents}_{\text{methyl orange}} = (0.004 \text{ mol} \times 1) + (0.0005 \text{ mol} \times 2) Equivalentsmethyl orange=0.004+0.001=0.0050 eq\text{Equivalents}_{\text{methyl orange}} = 0.004 + 0.001 = 0.0050 \text{ eq}

Volume of HCl\text{HCl} (x) = EquivalentsNormality of HCl=0.0050 eq0.1 N=0.050 L=50 mL\frac{\text{Equivalents}}{\text{Normality of HCl}} = \frac{0.0050 \text{ eq}}{0.1 \text{ N}} = 0.050 \text{ L} = 50 \text{ mL} So, x=50 mL\text{x} = 50 \text{ mL}.

4. Calculate x - y: x - y=50 mL45 mL=5 mL\text{x - y} = 50 \text{ mL} - 45 \text{ mL} = 5 \text{ mL}

The value of x - y is 5 mL.