Solveeit Logo

Question

Question: Which is smaller?: 2 or $(log_{e^{-1}}2 + log_{2}e^{-1})$...

Which is smaller?: 2 or (loge12+log2e1)(log_{e^{-1}}2 + log_{2}e^{-1})

Answer

(loge12+log2e1)(log_{e^{-1}}2 + log_{2}e^{-1})

Explanation

Solution

Let the given expression be E=loge12+log2e1E = log_{e^{-1}}2 + log_{2}e^{-1}. Using logarithm properties, E=loge2log2eE = -log_e 2 - log_2 e. Let x=loge2x = log_e 2. Then log2e=1xlog_2 e = \frac{1}{x}. So, E=(x+1x)E = -(x + \frac{1}{x}). By AM-GM inequality, for x>0x>0, x+1x2x + \frac{1}{x} \ge 2. Since x=loge21x = log_e 2 \ne 1, x+1x>2x + \frac{1}{x} > 2. Therefore, E=(x+1x)<2E = -(x + \frac{1}{x}) < -2. Since E<2E < -2, EE is smaller than 22.