Solveeit Logo

Question

Question: The coefficient of $x^3$ in the expansion of $(1+x+2x^2)\left(2x^2-\frac{1}{3x}\right)^9$ is...

The coefficient of x3x^3 in the expansion of (1+x+2x2)(2x213x)9(1+x+2x^2)\left(2x^2-\frac{1}{3x}\right)^9 is

A

2249-\frac{224}{9}

B

1129-\frac{112}{9}

C

22427-\frac{224}{27}

D

11227-\frac{112}{27}

Answer

The coefficient of x3x^3 in the expansion of (1+x+2x2)(2x213x)9(1+x+2x^2)\left(2x^2-\frac{1}{3x}\right)^9 is 22427-\frac{224}{27}.

Explanation

Solution

The general term in the expansion of (2x213x)9\left(2x^2-\frac{1}{3x}\right)^9 is Tr+1=(9r)(2x2)9r(13x)r=(9r)29r(13)rx183rT_{r+1} = \binom{9}{r} (2x^2)^{9-r} \left(-\frac{1}{3x}\right)^r = \binom{9}{r} 2^{9-r} \left(-\frac{1}{3}\right)^r x^{18-3r}. To find the coefficient of x3x^3 in the product (1+x+2x2)(2x213x)9(1+x+2x^2)\left(2x^2-\frac{1}{3x}\right)^9, we consider the terms in (1+x+2x2)(1+x+2x^2):

  1. From 11: we need x3x^3 from the binomial expansion. 183r=3    r=518-3r = 3 \implies r=5. Coefficient is (95)24(13)5=126×16×(1243)=2016243=22427\binom{9}{5} 2^4 \left(-\frac{1}{3}\right)^5 = 126 \times 16 \times (-\frac{1}{243}) = -\frac{2016}{243} = -\frac{224}{27}.
  2. From xx: we need x2x^2 from the binomial expansion. 183r=2    3r=1618-3r = 2 \implies 3r=16, rr is not an integer.
  3. From 2x22x^2: we need x1x^1 from the binomial expansion. 183r=1    3r=1718-3r = 1 \implies 3r=17, rr is not an integer. The total coefficient of x3x^3 is 22427-\frac{224}{27}.