Question
Question: Solution of $\frac{x+y-1}{x+y-2}dy = \frac{x+y+1}{x+y+2}dx$, given that $y=1$ when $x=1$ is...
Solution of x+y−2x+y−1dy=x+y+2x+y+1dx, given that y=1 when x=1 is

ln2(x−y)2−2=2(x+y)
ln2(x+y)2−2=2(x−y)
ln2(x−y)2+2=2(x+y)
ln2(x+y)2+2=2(x−y)
ln2(x+y)2−2=2(x−y)
Solution
The given differential equation is: x+y−2x+y−1dy=x+y+2x+y+1dx
Rearrange to find dxdy: dxdy=x+y+2x+y+1⋅x+y−1x+y−2
This equation involves the term (x+y). Let's use the substitution v=x+y. Then, differentiate v with respect to x: dxdv=1+dxdy⟹dxdy=dxdv−1
Substitute v and dxdy into the equation: dxdv−1=(v+2)(v−1)(v+1)(v−2) dxdv=1+v2+v−2v2−v−2
Combine the terms on the right side: dxdv=v2+v−2(v2+v−2)+(v2−v−2) dxdv=v2+v−22v2−4
Separate the variables: 2(v2−2)v2+v−2dv=dx
Integrate both sides: ∫2(v2−2)v2+v−2dv=∫dx 21∫v2−2(v2−2)+vdv=∫dx 21∫(1+v2−2v)dv=∫dx 21(∫1dv+∫v2−2vdv)=x+C1
For the integral ∫v2−2vdv, let u=v2−2, so du=2vdv⟹vdv=21du. ∫v2−2vdv=∫2u1du=21ln∣u∣=21ln∣v2−2∣
Substitute this back into the main integral: 21(v+21ln∣v2−2∣)=x+C1 Multiply by 2: v+21ln∣v2−2∣=2x+2C1 Multiply by 2 again: 2v+ln∣v2−2∣=4x+C2(where C2=4C1)
Substitute back v=x+y: 2(x+y)+ln∣(x+y)2−2∣=4x+C2
Rearrange the terms to match the options: ln∣(x+y)2−2∣=4x−2(x+y)+C2 ln∣(x+y)2−2∣=2x−2y+C2 ln∣(x+y)2−2∣=2(x−y)+C2
Now, apply the initial condition y=1 when x=1: ln∣(1+1)2−2∣=2(1−1)+C2 ln∣22−2∣=0+C2 ln∣4−2∣=C2 C2=ln2
Substitute C2=ln2 back into the general solution: ln∣(x+y)2−2∣=2(x−y)+ln2
Move ln2 to the left side: ln∣(x+y)2−2∣−ln2=2(x−y)
Using the logarithm property lna−lnb=ln(a/b): ln2(x+y)2−2=2(x−y)