Solveeit Logo

Question

Question: $\sin^4 \frac{\pi}{8} + \sin^4 \frac{3\pi}{8} + \sin^4 \frac{5\pi}{8} + \sin^4 \frac{7\pi}{8} = \fra...

sin4π8+sin43π8+sin45π8+sin47π8=23\sin^4 \frac{\pi}{8} + \sin^4 \frac{3\pi}{8} + \sin^4 \frac{5\pi}{8} + \sin^4 \frac{7\pi}{8} = \frac{2}{3}

Answer

False

Explanation

Solution

Let S=sin4π8+sin43π8+sin45π8+sin47π8S = \sin^4 \frac{\pi}{8} + \sin^4 \frac{3\pi}{8} + \sin^4 \frac{5\pi}{8} + \sin^4 \frac{7\pi}{8}. Using sin(πθ)=sin(θ)\sin(\pi - \theta) = \sin(\theta), we have sin5π8=sin3π8\sin \frac{5\pi}{8} = \sin \frac{3\pi}{8} and sin7π8=sinπ8\sin \frac{7\pi}{8} = \sin \frac{\pi}{8}. So, S=2(sin4π8+sin43π8)S = 2 (\sin^4 \frac{\pi}{8} + \sin^4 \frac{3\pi}{8}). Using sin(π2θ)=cos(θ)\sin(\frac{\pi}{2} - \theta) = \cos(\theta), we have sin3π8=cosπ8\sin \frac{3\pi}{8} = \cos \frac{\pi}{8}. So, S=2(sin4π8+cos4π8)S = 2 (\sin^4 \frac{\pi}{8} + \cos^4 \frac{\pi}{8}). Using sin4θ+cos4θ=112sin2(2θ)\sin^4 \theta + \cos^4 \theta = 1 - \frac{1}{2}\sin^2(2\theta), with θ=π8\theta = \frac{\pi}{8}, 2θ=π42\theta = \frac{\pi}{4}. S=2(112sin2(π4))=2(112(12)2)=2(112×12)=2(114)=2×34=32S = 2 (1 - \frac{1}{2}\sin^2(\frac{\pi}{4})) = 2 (1 - \frac{1}{2}(\frac{1}{\sqrt{2}})^2) = 2 (1 - \frac{1}{2} \times \frac{1}{2}) = 2 (1 - \frac{1}{4}) = 2 \times \frac{3}{4} = \frac{3}{2}. Since 3223\frac{3}{2} \neq \frac{2}{3}, the statement is false.