Solveeit Logo

Question

Question: Minimum value of the expression $(4 \sin^2\theta + 12 \operatorname{cosec}^2\theta - 13)$ is equal t...

Minimum value of the expression (4sin2θ+12cosec2θ13)(4 \sin^2\theta + 12 \operatorname{cosec}^2\theta - 13) is equal to-

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

To find the minimum value of the expression (4sin2θ+12cosec2θ13)(4 \sin^2\theta + 12 \operatorname{cosec}^2\theta - 13), let's analyze the term 4sin2θ+12cosec2θ4 \sin^2\theta + 12 \operatorname{cosec}^2\theta.

  1. Define a substitution: Let x=sin2θx = \sin^2\theta. Since sinθ\sin\theta is a real number, 0sin2θ10 \le \sin^2\theta \le 1. Also, for cosec2θ\operatorname{cosec}^2\theta to be defined, sinθ0\sin\theta \ne 0, which means sin2θ0\sin^2\theta \ne 0. Therefore, the domain for xx is x(0,1]x \in (0, 1].

  2. Rewrite the expression in terms of x: The expression becomes E=4x+12(1x)13=4x+12x13E = 4x + 12\left(\frac{1}{x}\right) - 13 = 4x + \frac{12}{x} - 13. We need to find the minimum value of this expression for x(0,1]x \in (0, 1].

  3. Analyze the function g(x)=4x+12xg(x) = 4x + \frac{12}{x}: To find the minimum value of g(x)g(x) on the interval (0,1](0, 1], we can use calculus. Find the first derivative of g(x)g(x) with respect to xx: g(x)=ddx(4x+12x)=412x2g'(x) = \frac{d}{dx}\left(4x + \frac{12}{x}\right) = 4 - \frac{12}{x^2}.

  4. Determine the monotonicity of g(x)g(x) on (0,1](0, 1]: For x(0,1]x \in (0, 1], we have x21x^2 \le 1. This implies 1x21\frac{1}{x^2} \ge 1. Multiplying by 12, we get 12x212\frac{12}{x^2} \ge 12. Now, consider g(x)=412x2g'(x) = 4 - \frac{12}{x^2}. Since 12x212\frac{12}{x^2} \ge 12, it follows that 412x2412=84 - \frac{12}{x^2} \le 4 - 12 = -8. So, g(x)8g'(x) \le -8, which means g(x)<0g'(x) < 0 for all x(0,1]x \in (0, 1].

  5. Find the minimum value: Since g(x)<0g'(x) < 0 on the interval (0,1](0, 1], the function g(x)g(x) is strictly decreasing on this interval. For a strictly decreasing function, the minimum value occurs at the largest possible value in its domain. In this case, the largest value of xx in (0,1](0, 1] is x=1x=1.

    Substitute x=1x=1 into g(x)g(x): g(1)=4(1)+121=4+12=16g(1) = 4(1) + \frac{12}{1} = 4 + 12 = 16. This minimum value of g(x)g(x) occurs when sin2θ=1\sin^2\theta = 1, which is a valid value (e.g., θ=π2\theta = \frac{\pi}{2}).

  6. Calculate the minimum value of the original expression: The minimum value of the expression (4sin2θ+12cosec2θ13)(4 \sin^2\theta + 12 \operatorname{cosec}^2\theta - 13) is: Emin=g(1)13=1613=3E_{min} = g(1) - 13 = 16 - 13 = 3.