Solveeit Logo

Question

Question: $\int \frac{e^x}{(2+e^x)(e^x+1)} dx =$ (where C is a constant of integration.)...

ex(2+ex)(ex+1)dx=\int \frac{e^x}{(2+e^x)(e^x+1)} dx =

(where C is a constant of integration.)

A

log(ex+2ex+1)+Clog(\frac{e^x+2}{e^x+1})+C

B

log(exex+2)+Clog(\frac{e^x}{e^x+2})+C

C

ex+1ex+2+C\frac{e^x+1}{e^x+2}+C

D

log(ex+1ex+2)+Clog(\frac{e^x+1}{e^x+2})+C

Answer

ln(ex+1ex+2)+C\ln\left(\frac{e^x+1}{e^x+2}\right) + C

Explanation

Solution

Let the given integral be II. I=ex(2+ex)(ex+1)dxI = \int \frac{e^x}{(2+e^x)(e^x+1)} dx We use the substitution method. Let u=exu = e^x. Then, the differential dudu is given by du=ddx(ex)dx=exdxdu = \frac{d}{dx}(e^x) dx = e^x dx.

Substitute uu and dudu into the integral: I=du(2+u)(u+1)I = \int \frac{du}{(2+u)(u+1)} Now, we have a rational function in terms of uu. We can solve this integral using partial fraction decomposition. We decompose the integrand 1(u+2)(u+1)\frac{1}{(u+2)(u+1)} into partial fractions: 1(u+2)(u+1)=Au+2+Bu+1\frac{1}{(u+2)(u+1)} = \frac{A}{u+2} + \frac{B}{u+1} To find the constants AA and BB, we multiply both sides by (u+2)(u+1)(u+2)(u+1): 1=A(u+1)+B(u+2)1 = A(u+1) + B(u+2) Set u=1u = -1: 1=A(1+1)+B(1+2)1 = A(-1+1) + B(-1+2) 1=A(0)+B(1)1 = A(0) + B(1) 1=B1 = B Set u=2u = -2: 1=A(2+1)+B(2+2)1 = A(-2+1) + B(-2+2) 1=A(1)+B(0)1 = A(-1) + B(0) 1=A1 = -A A=1A = -1 So, the partial fraction decomposition is: 1(u+2)(u+1)=1u+2+1u+1\frac{1}{(u+2)(u+1)} = \frac{-1}{u+2} + \frac{1}{u+1} Now, we can rewrite the integral as: I=(1u+11u+2)duI = \int \left(\frac{1}{u+1} - \frac{1}{u+2}\right) du Integrate each term: I=1u+1du1u+2duI = \int \frac{1}{u+1} du - \int \frac{1}{u+2} du I=lnu+1lnu+2+CI = \ln|u+1| - \ln|u+2| + C Using the property of logarithms lnalnb=lnab\ln a - \ln b = \ln \frac{a}{b}: I=lnu+1u+2+CI = \ln\left|\frac{u+1}{u+2}\right| + C Finally, substitute back u=exu = e^x: I=lnex+1ex+2+CI = \ln\left|\frac{e^x+1}{e^x+2}\right| + C Since ex>0e^x > 0 for all real xx, both ex+1e^x+1 and ex+2e^x+2 are positive. Thus, the absolute value is not necessary. I=ln(ex+1ex+2)+CI = \ln\left(\frac{e^x+1}{e^x+2}\right) + C

The final answer is ln(ex+1ex+2)+C\ln\left(\frac{e^x+1}{e^x+2}\right) + C.