Question
Question: In a triangle ABC if $\frac{sin^2 A + sin^2 B + sin^2 C}{cos^2 A + cos^2 B + cos^2 C} = 2$; then-...
In a triangle ABC if cos2A+cos2B+cos2Csin2A+sin2B+sin2C=2; then-

maximum value of sinA + sinB + sinC is 1+2
maximum value of sinA + sinB + sinC is 233
sin2A+sin2B+sin2Csin2Asin2Bsin2C=0
sin2A+sin2B+sin2Csin2Asin2Bsin2C=31
Options (A) and (C) are correct.
Solution
The given condition is cos2A+cos2B+cos2Csin2A+sin2B+sin2C=2.
Let's simplify the denominator using cos2X=1−sin2X: cos2A+cos2B+cos2C=(1−sin2A)+(1−sin2B)+(1−sin2C) =3−(sin2A+sin2B+sin2C).
Substitute this into the given equation: 3−(sin2A+sin2B+sin2C)sin2A+sin2B+sin2C=2.
Let X=sin2A+sin2B+sin2C. 3−XX=2 X=2(3−X) X=6−2X 3X=6 X=2.
So, we have sin2A+sin2B+sin2C=2. Consequently, cos2A+cos2B+cos2C=3−X=3−2=1.
Now, let's use the identity cos2θ=21+cos2θ: cos2A+cos2B+cos2C=1 21+cos2A+21+cos2B+21+cos2C=1 1+cos2A+1+cos2B+1+cos2C=2 3+cos2A+cos2B+cos2C=2 cos2A+cos2B+cos2C=−1.
For a triangle ABC, we have the identity cos2A+cos2B+cos2C=−1−4cosAcosBcosC. Substituting this into the equation above: −1−4cosAcosBcosC=−1 −4cosAcosBcosC=0 cosAcosBcosC=0.
This implies that at least one of cosA, cosB, or cosC must be zero. Since A, B, C are angles of a triangle (0<A,B,C<π), if cosX=0, then X=2π=90∘. Therefore, the triangle ABC must be a right-angled triangle.
Now let's evaluate the given options:
(A) maximum value of sinA + sinB + sinC is 1+2 Since the triangle is right-angled, let's assume A=90∘. Then B+C=90∘. The expression becomes sin90∘+sinB+sinC=1+sinB+sin(90∘−B) =1+sinB+cosB. To find the maximum value of 1+sinB+cosB, we need to maximize sinB+cosB. sinB+cosB=2(21sinB+21cosB) =2(cos4πsinB+sin4πcosB) =2sin(B+4π). The maximum value of sin(B+4π) is 1. This occurs when B+4π=2π, so B=4π=45∘. If B=45∘, then C=90∘−45∘=45∘. The maximum value of sinA+sinB+sinC is 1+2×1=1+2. Thus, option (A) is correct.
(B) maximum value of sinA + sinB + sinC is 233 This value corresponds to an equilateral triangle where A=B=C=60∘. However, we found that the triangle must be right-angled. An equilateral triangle is not right-angled. Also, for an equilateral triangle, sin2A+sin2B+sin2C=3(23)2=49 and cos2A+cos2B+cos2C=3(21)2=43. The ratio is 3/49/4=3, which is not 2. Thus, option (B) is incorrect.
(C) sin2A+sin2B+sin2Csin2Asin2Bsin2C=0 Since the triangle is right-angled, let A=90∘. Then 2A=180∘. So, sin2A=sin180∘=0. The numerator of the expression is sin2Asin2Bsin2C=0×sin2B×sin2C=0. Now consider the denominator: sin2A+sin2B+sin2C=0+sin2B+sin2C. Since B+C=90∘, C=90∘−B. sin2B+sin2C=sin2B+sin(2(90∘−B))=sin2B+sin(180∘−2B) =sin2B+sin2B=2sin2B. Since B is an angle of a right-angled triangle, 0<B<90∘. Therefore, 0<2B<180∘, which means sin2B>0. So, the denominator 2sin2B=0. Therefore, sin2A+sin2B+sin2Csin2Asin2Bsin2C=2sin2B0=0. Thus, option (C) is correct.
(D) sin2A+sin2B+sin2Csin2Asin2Bsin2C=31 Based on the calculation for option (C), this option is incorrect.
Both options (A) and (C) are correct.