Solveeit Logo

Question

Question: In a triangle ABC if $\frac{sin^2 A + sin^2 B + sin^2 C}{cos^2 A + cos^2 B + cos^2 C} = 2$; then-...

In a triangle ABC if sin2A+sin2B+sin2Ccos2A+cos2B+cos2C=2\frac{sin^2 A + sin^2 B + sin^2 C}{cos^2 A + cos^2 B + cos^2 C} = 2; then-

A

maximum value of sinA + sinB + sinC is 1+21 + \sqrt{2}

B

maximum value of sinA + sinB + sinC is 332\frac{3\sqrt{3}}{2}

C

sin2Asin2Bsin2Csin2A+sin2B+sin2C=0\frac{sin 2A sin 2B sin 2C}{sin 2A + sin 2B + sin 2C} = 0

D

sin2Asin2Bsin2Csin2A+sin2B+sin2C=13\frac{sin 2A sin 2B sin 2C}{sin 2A + sin 2B + sin 2C} = \frac{1}{\sqrt{3}}

Answer

Options (A) and (C) are correct.

Explanation

Solution

The given condition is sin2A+sin2B+sin2Ccos2A+cos2B+cos2C=2\frac{sin^2 A + sin^2 B + sin^2 C}{cos^2 A + cos^2 B + cos^2 C} = 2.

Let's simplify the denominator using cos2X=1sin2Xcos^2 X = 1 - sin^2 X: cos2A+cos2B+cos2C=(1sin2A)+(1sin2B)+(1sin2C)cos^2 A + cos^2 B + cos^2 C = (1 - sin^2 A) + (1 - sin^2 B) + (1 - sin^2 C) =3(sin2A+sin2B+sin2C)= 3 - (sin^2 A + sin^2 B + sin^2 C).

Substitute this into the given equation: sin2A+sin2B+sin2C3(sin2A+sin2B+sin2C)=2\frac{sin^2 A + sin^2 B + sin^2 C}{3 - (sin^2 A + sin^2 B + sin^2 C)} = 2.

Let X=sin2A+sin2B+sin2CX = sin^2 A + sin^2 B + sin^2 C. X3X=2\frac{X}{3 - X} = 2 X=2(3X)X = 2(3 - X) X=62XX = 6 - 2X 3X=63X = 6 X=2X = 2.

So, we have sin2A+sin2B+sin2C=2sin^2 A + sin^2 B + sin^2 C = 2. Consequently, cos2A+cos2B+cos2C=3X=32=1cos^2 A + cos^2 B + cos^2 C = 3 - X = 3 - 2 = 1.

Now, let's use the identity cos2θ=1+cos2θ2cos^2 \theta = \frac{1 + cos 2\theta}{2}: cos2A+cos2B+cos2C=1cos^2 A + cos^2 B + cos^2 C = 1 1+cos2A2+1+cos2B2+1+cos2C2=1\frac{1 + cos 2A}{2} + \frac{1 + cos 2B}{2} + \frac{1 + cos 2C}{2} = 1 1+cos2A+1+cos2B+1+cos2C=21 + cos 2A + 1 + cos 2B + 1 + cos 2C = 2 3+cos2A+cos2B+cos2C=23 + cos 2A + cos 2B + cos 2C = 2 cos2A+cos2B+cos2C=1cos 2A + cos 2B + cos 2C = -1.

For a triangle ABC, we have the identity cos2A+cos2B+cos2C=14cosAcosBcosCcos 2A + cos 2B + cos 2C = -1 - 4 cos A cos B cos C. Substituting this into the equation above: 14cosAcosBcosC=1-1 - 4 cos A cos B cos C = -1 4cosAcosBcosC=0-4 cos A cos B cos C = 0 cosAcosBcosC=0cos A cos B cos C = 0.

This implies that at least one of cosAcos A, cosBcos B, or cosCcos C must be zero. Since A, B, C are angles of a triangle (0<A,B,C<π0 < A, B, C < \pi), if cosX=0cos X = 0, then X=π2=90X = \frac{\pi}{2} = 90^\circ. Therefore, the triangle ABC must be a right-angled triangle.

Now let's evaluate the given options:

(A) maximum value of sinA + sinB + sinC is 1+21 + \sqrt{2} Since the triangle is right-angled, let's assume A=90A = 90^\circ. Then B+C=90B+C = 90^\circ. The expression becomes sin90+sinB+sinC=1+sinB+sin(90B)sin 90^\circ + sin B + sin C = 1 + sin B + sin (90^\circ - B) =1+sinB+cosB= 1 + sin B + cos B. To find the maximum value of 1+sinB+cosB1 + sin B + cos B, we need to maximize sinB+cosBsin B + cos B. sinB+cosB=2(12sinB+12cosB)sin B + cos B = \sqrt{2} \left(\frac{1}{\sqrt{2}} sin B + \frac{1}{\sqrt{2}} cos B\right) =2(cosπ4sinB+sinπ4cosB)= \sqrt{2} \left(cos \frac{\pi}{4} sin B + sin \frac{\pi}{4} cos B\right) =2sin(B+π4)= \sqrt{2} sin \left(B + \frac{\pi}{4}\right). The maximum value of sin(B+π4)sin \left(B + \frac{\pi}{4}\right) is 11. This occurs when B+π4=π2B + \frac{\pi}{4} = \frac{\pi}{2}, so B=π4=45B = \frac{\pi}{4} = 45^\circ. If B=45B = 45^\circ, then C=9045=45C = 90^\circ - 45^\circ = 45^\circ. The maximum value of sinA+sinB+sinCsin A + sin B + sin C is 1+2×1=1+21 + \sqrt{2} \times 1 = 1 + \sqrt{2}. Thus, option (A) is correct.

(B) maximum value of sinA + sinB + sinC is 332\frac{3\sqrt{3}}{2} This value corresponds to an equilateral triangle where A=B=C=60A=B=C=60^\circ. However, we found that the triangle must be right-angled. An equilateral triangle is not right-angled. Also, for an equilateral triangle, sin2A+sin2B+sin2C=3(32)2=94sin^2 A + sin^2 B + sin^2 C = 3(\frac{\sqrt{3}}{2})^2 = \frac{9}{4} and cos2A+cos2B+cos2C=3(12)2=34cos^2 A + cos^2 B + cos^2 C = 3(\frac{1}{2})^2 = \frac{3}{4}. The ratio is 9/43/4=3\frac{9/4}{3/4} = 3, which is not 22. Thus, option (B) is incorrect.

(C) sin2Asin2Bsin2Csin2A+sin2B+sin2C=0\frac{sin 2A sin 2B sin 2C}{sin 2A + sin 2B + sin 2C} = 0 Since the triangle is right-angled, let A=90A = 90^\circ. Then 2A=1802A = 180^\circ. So, sin2A=sin180=0sin 2A = sin 180^\circ = 0. The numerator of the expression is sin2Asin2Bsin2C=0×sin2B×sin2C=0sin 2A sin 2B sin 2C = 0 \times sin 2B \times sin 2C = 0. Now consider the denominator: sin2A+sin2B+sin2C=0+sin2B+sin2Csin 2A + sin 2B + sin 2C = 0 + sin 2B + sin 2C. Since B+C=90B+C = 90^\circ, C=90BC = 90^\circ - B. sin2B+sin2C=sin2B+sin(2(90B))=sin2B+sin(1802B)sin 2B + sin 2C = sin 2B + sin (2(90^\circ - B)) = sin 2B + sin (180^\circ - 2B) =sin2B+sin2B=2sin2B= sin 2B + sin 2B = 2 sin 2B. Since BB is an angle of a right-angled triangle, 0<B<900 < B < 90^\circ. Therefore, 0<2B<1800 < 2B < 180^\circ, which means sin2B>0sin 2B > 0. So, the denominator 2sin2B02 sin 2B \neq 0. Therefore, sin2Asin2Bsin2Csin2A+sin2B+sin2C=02sin2B=0\frac{sin 2A sin 2B sin 2C}{sin 2A + sin 2B + sin 2C} = \frac{0}{2 sin 2B} = 0. Thus, option (C) is correct.

(D) sin2Asin2Bsin2Csin2A+sin2B+sin2C=13\frac{sin 2A sin 2B sin 2C}{sin 2A + sin 2B + sin 2C} = \frac{1}{\sqrt{3}} Based on the calculation for option (C), this option is incorrect.

Both options (A) and (C) are correct.