Solveeit Logo

Question

Question: If $\vec{a} = i + j + k$, $\vec{c} = j - k$, $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{a}.\vec{b}...

If a=i+j+k\vec{a} = i + j + k, c=jk\vec{c} = j - k, a×b=c\vec{a} \times \vec{b} = \vec{c} and a.b=1\vec{a}.\vec{b} = 1 then b=\vec{b} =

A

i

B
  • i
C

j

D

k

Answer

i

Explanation

Solution

Let b=xi+yj+zk\vec{b} = xi + yj + zk.

Given:

a=i+j+k,c=jk,a×b=c,ab=1.\vec{a} = i + j + k, \quad \vec{c} = j - k, \quad \vec{a} \times \vec{b} = \vec{c}, \quad \vec{a} \cdot \vec{b} = 1.

Step 1: Dot Product Condition

ab=x+y+z=1.(1)\vec{a} \cdot \vec{b} = x + y + z = 1. \quad \text{(1)}

Step 2: Cross Product Condition

a×b=ijk111xyz=i(zy)j(zx)+k(yx).\vec{a} \times \vec{b} = \begin{vmatrix} i & j & k \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} = i(z - y) - j(z - x) + k(y - x).

We are given:

a×b=0i+1j1k.\vec{a} \times \vec{b} = 0\,i + 1\,j - 1\,k.

Thus, equating components:

{zy=0,(i-component)(zx)=1zx=1,yx=1.\begin{cases} z - y = 0, \quad \text{(i-component)}\\[1mm] -(z - x) = 1 \quad \Rightarrow \quad z - x = -1,\\[1mm] y - x = -1. \end{cases}

From zy=0z - y = 0, we have:

y=z.(2)y = z. \quad \text{(2)}

From yx=1y - x = -1, substituting y=zy=z gives:

zx=1x=z+1.(3)z - x = -1 \quad \Rightarrow \quad x = z + 1. \quad \text{(3)}

(This is consistent with the second equation.)

Step 3: Solve Using Dot Product Substitute xx and yy from (2) and (3) into equation (1):

(z+1)+z+z=13z+1=13z=0z=0.(z + 1) + z + z = 1 \quad \Rightarrow \quad 3z + 1 = 1 \quad \Rightarrow \quad 3z = 0 \quad \Rightarrow \quad z = 0.

Then:

y=z=0,x=0+1=1.y = z = 0,\quad x = 0 + 1 = 1.

Thus,

b=i.\vec{b} = i.