Question
Question: If $\vec{a} = i + j + k$, $\vec{c} = j - k$, $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{a}.\vec{b}...
If a=i+j+k, c=j−k, a×b=c and a.b=1 then b=

A
i
B
- i
C
j
D
k
Answer
i
Explanation
Solution
Let b=xi+yj+zk.
Given:
a=i+j+k,c=j−k,a×b=c,a⋅b=1.Step 1: Dot Product Condition
a⋅b=x+y+z=1.(1)Step 2: Cross Product Condition
a×b=i1xj1yk1z=i(z−y)−j(z−x)+k(y−x).We are given:
a×b=0i+1j−1k.Thus, equating components:
⎩⎨⎧z−y=0,(i-component)−(z−x)=1⇒z−x=−1,y−x=−1.From z−y=0, we have:
y=z.(2)From y−x=−1, substituting y=z gives:
z−x=−1⇒x=z+1.(3)(This is consistent with the second equation.)
Step 3: Solve Using Dot Product Substitute x and y from (2) and (3) into equation (1):
(z+1)+z+z=1⇒3z+1=1⇒3z=0⇒z=0.Then:
y=z=0,x=0+1=1.Thus,
b=i.