Solveeit Logo

Question

Question: $\frac{(x-1)(x+1)(x-2)^2(e^{3x}-1)}{x(3-x)^3(x-1)^2(x+3)} <0$...

(x1)(x+1)(x2)2(e3x1)x(3x)3(x1)2(x+3)<0\frac{(x-1)(x+1)(x-2)^2(e^{3x}-1)}{x(3-x)^3(x-1)^2(x+3)} <0

Answer

(-1, 0) \cup (0, 1) \cup (3, \infty)

Explanation

Solution

The inequality is (x1)(x+1)(x2)2(e3x1)x(3x)3(x1)2(x+3)<0\frac{(x-1)(x+1)(x-2)^2(e^{3x}-1)}{x(3-x)^3(x-1)^2(x+3)} <0. First, identify the critical points by setting the numerator and denominator to zero. Numerator zeros: x1=0    x=1x-1=0 \implies x=1, x+1=0    x=1x+1=0 \implies x=-1, (x2)2=0    x=2(x-2)^2=0 \implies x=2, e3x1=0    e3x=1    3x=0    x=0e^{3x}-1=0 \implies e^{3x}=1 \implies 3x=0 \implies x=0. Denominator zeros: x=0x=0, 3x=0    x=33-x=0 \implies x=3, (x1)2=0    x=1(x-1)^2=0 \implies x=1, x+3=0    x=3x+3=0 \implies x=-3. The expression is undefined at x{3,0,1,3}x \in \{-3, 0, 1, 3\}. The expression is zero at x{1,0,1,2}x \in \{-1, 0, 1, 2\}. Since the inequality is strict (<0<0), these values are not part of the solution. The simplified set of critical points to consider for sign changes are x{3,1,0,1,2,3}x \in \{-3, -1, 0, 1, 2, 3\}.

Simplify the inequality by canceling common factors: (x1)(x+1)(x2)2(e3x1)x(3x)3(x1)2(x+3)=(x+1)(x2)2(e3x1)x(3x)3(x1)(x+3)\frac{(x-1)(x+1)(x-2)^2(e^{3x}-1)}{x(3-x)^3(x-1)^2(x+3)} = \frac{(x+1)(x-2)^2(e^{3x}-1)}{x(3-x)^3(x-1)(x+3)} for x1x \neq 1.

Now analyze the sign of the simplified expression P(x)=(x+1)(x2)2(e3x1)x(3x)3(x1)(x+3)P(x) = \frac{(x+1)(x-2)^2(e^{3x}-1)}{x(3-x)^3(x-1)(x+3)} in the intervals defined by the critical points: (,3)(-\infty, -3), (3,1)(-3, -1), (1,0)(-1, 0), (0,1)(0, 1), (1,2)(1, 2), (2,3)(2, 3), (3,)(3, \infty).

  • (x2)2(x-2)^2 is always positive for x2x \neq 2.
  • (e3x1)(e^{3x}-1) is negative for x<0x<0 and positive for x>0x>0.
  • (3x)3(3-x)^3 has the same sign as (3x)(3-x). It's positive for x<3x<3 and negative for x>3x>3.

Let's examine the sign of P(x)P(x) in each interval:

  1. Interval (,3)(-\infty, -3): Let x=4x=-4. P(4)=(3)(+)(e121)(4)(7)3(5)(1)=()(+)()()()()()=++=+P(-4) = \frac{(-3)(+)(e^{-12}-1)}{(-4)(-7)^3(-5)(-1)} = \frac{(-)(+)(-)}{(-)(-)(-)(-)} = \frac{+}{+} = +
  2. Interval (3,1)(-3, -1): Let x=2x=-2. P(2)=(1)(+)(e61)(2)(5)3(3)(1)=()(+)()()()()()=++=+P(-2) = \frac{(-1)(+)(e^{-6}-1)}{(-2)(-5)^3(-3)(-1)} = \frac{(-)(+)(-)}{(-)(-)(-)(-)} = \frac{+}{+} = +
  3. Interval (1,0)(-1, 0): Let x=0.5x=-0.5. P(0.5)=(+)(+)(e1.51)(0.5)(3.5)3(1.5)(2.5)=(+)(+)()()(+)()(+)=+=P(-0.5) = \frac{(+)(+)(e^{-1.5}-1)}{(-0.5)(3.5)^3(-1.5)(2.5)} = \frac{(+)(+)(-)}{(-)(+)(-)(+)} = \frac{-}{+} = -
  4. Interval (0,1)(0, 1): Let x=0.5x=0.5. P(0.5)=(1.5)(+)(e1.51)(0.5)(2.5)3(0.5)(3.5)=(+)(+)(+)(+)(+)()(+)=+=P(0.5) = \frac{(1.5)(+)(e^{1.5}-1)}{(0.5)(2.5)^3(-0.5)(3.5)} = \frac{(+)(+)(+)}{(+)(+)(-)(+)} = \frac{+}{-} = -
  5. Interval (1,2)(1, 2): Let x=1.5x=1.5. P(1.5)=(2.5)(+)(e4.51)(1.5)(1.5)3(0.5)(4.5)=(+)(+)(+)(+)(+)(+)(+)=++=+P(1.5) = \frac{(2.5)(+)(e^{4.5}-1)}{(1.5)(1.5)^3(0.5)(4.5)} = \frac{(+)(+)(+)}{(+)(+)(+)(+)} = \frac{+}{+} = +
  6. Interval (2,3)(2, 3): Let x=2.5x=2.5. P(2.5)=(3.5)(+)(e7.51)(2.5)(0.5)3(1.5)(5.5)=(+)(+)(+)(+)(+)(+)(+)=++=+P(2.5) = \frac{(3.5)(+)(e^{7.5}-1)}{(2.5)(0.5)^3(1.5)(5.5)} = \frac{(+)(+)(+)}{(+)(+)(+)(+)} = \frac{+}{+} = +
  7. Interval (3,)(3, \infty): Let x=4x=4. P(4)=(5)(+)(e121)(4)(1)3(3)(7)=(+)(+)(+)(+)()(+)(+)=+=P(4) = \frac{(5)(+)(e^{12}-1)}{(4)(-1)^3(3)(7)} = \frac{(+)(+)(+)}{(+)(-)(+)(+)} = \frac{+}{-} = -

The inequality P(x)<0P(x) < 0 is satisfied for x(1,0)(0,1)(3,)x \in (-1, 0) \cup (0, 1) \cup (3, \infty). The critical points x=3,1,0,1,2,3x=-3, -1, 0, 1, 2, 3 are excluded because the inequality is strict or because they make the denominator zero. The term (x2)2(x-2)^2 being zero at x=2x=2 results in the expression being 0, which is not less than 0. The term (e3x1)(e^{3x}-1) being zero at x=0x=0 also results in the expression being 0. The common factor (x1)(x-1) being zero at x=1x=1 results in a 0/0 form, and after simplification, x=1x=1 is a root of the denominator, so it's excluded.

Therefore, the solution set is (1,0)(0,1)(3,)(-1, 0) \cup (0, 1) \cup (3, \infty).