Solveeit Logo

Question

Question: Consider the circle $x^2 + y^2 - 8x - 18y + 93 = 0$ with centre C and point P(2, 5) outside it. From...

Consider the circle x2+y28x18y+93=0x^2 + y^2 - 8x - 18y + 93 = 0 with centre C and point P(2, 5) outside it. From the point P, a pair of tangents PQ and PR are drawn to the circle with S as mid point of QR. The line joining P to C intersect the given circle at A and B. Which of the following is/are true?

A

The angle between two tangents from P is tan1(43)tan^{-1}(\frac{4}{3})

B

CP is arithmetic mean of AP and BP

C

Area of PQR\triangle PQR is 325\frac{32}{5} unit²

D

Equation of circumcircle of PQR\triangle PQR is x2+y26x14y+53=0x^2 + y^2 - 6x - 14y + 53 = 0.

Answer

All the statements are true. (A), (B), (C), (D)

Explanation

Solution

We are given the circle

x2+y28x18y+93=0.x^2+y^2-8x-18y+93=0.

Step 1. Find the centre and radius.

Complete the square:

x28x=(x4)216,y218y=(y9)281.\begin{aligned} x^2 - 8x &= (x-4)^2-16,\\[1mm] y^2 - 18y &= (y-9)^2-81. \end{aligned}

Thus the equation becomes

(x4)2+(y9)21681+93=0(x4)2+(y9)2=4.(x-4)^2+(y-9)^2-16-81+93=0 \quad\Longrightarrow\quad (x-4)^2+(y-9)^2=4.

So the centre is C=(4,9)C=(4,9) and the radius r=2r=2.

Step 2. Verify point P and tangent lengths.

Point P=(2,5)P=(2,5). Its distance from CC is

CP=(24)2+(59)2=4+16=20=25.CP=\sqrt{(2-4)^2+(5-9)^2}=\sqrt{4+16}=\sqrt{20}=2\sqrt{5}.

Since 25>22\sqrt{5} > 2, PP is outside. The length of each tangent from PP is

PQ=CP2r2=204=16=4.PQ = \sqrt{CP^2-r^2}=\sqrt{20-4}=\sqrt{16}=4.

Step 3. Option (A): Angle between the tangents

The angle between the two tangents from an external point is given by

θ=2sin1(rCP)=2sin1(225)=2sin1(15).\theta = 2\sin^{-1}\left(\frac{r}{CP}\right)=2\sin^{-1}\left(\frac{2}{2\sqrt5}\right)=2\sin^{-1}\left(\frac{1}{\sqrt5}\right).

Alternatively, using the half-angle tangent:

tanθ2=rCP2r2=24=12θ2=tan112,\tan\frac{\theta}{2}=\frac{r}{\sqrt{CP^2-r^2}}=\frac{2}{4}=\frac{1}{2} \quad\Longrightarrow\quad \frac{\theta}{2}=\tan^{-1}\frac{1}{2},

so

θ=2tan112.\theta = 2\tan^{-1}\frac{1}{2}.

But note the trigonometric identity:

2tan112=tan143,2\tan^{-1}\frac{1}{2}=\tan^{-1}\frac{4}{3},

since tan(2tan1(1/2))=2(1/2)1(1/2)2=111/4=13/4=43\tan(2\tan^{-1}(1/2))=\frac{2(1/2)}{1-(1/2)^2}=\frac{1}{1-1/4}=\frac{1}{3/4}=\frac{4}{3}.
Thus (A) is true.

Step 4. Option (B): CP is the arithmetic mean of AP and BP

The line joining PP and CC meets the circle at AA and BB. Write the line PCPC: through P(2,5)P(2,5) and C(4,9)C(4,9) the slope is

m=9542=2,m=\frac{9-5}{4-2}=2,

so its equation is

y5=2(x2)y=2x+1.y-5=2(x-2) \quad\Longrightarrow\quad y=2x+1.

Parameterize:

(x,y)=(2+2t,  5+4t),with t=0 at P and t=1 at C.( x, y ) = (2+2t,\; 5+4t), \quad \text{with } t=0 \text{ at } P \text{ and } t=1 \text{ at } C.

Substitute into the circle’s equation (in centre–radius form):

(2+2t4)2+(5+4t9)2=4(2t2)2+(4t4)2=4.(2+2t-4)^2+(5+4t-9)^2=4 \quad\Longrightarrow\quad (2t-2)^2+(4t-4)^2=4.

Factor:

4(t1)2+16(t1)2=20(t1)2=4(t1)2=15.4(t-1)^2+16(t-1)^2 =20(t-1)^2=4 \quad\Longrightarrow\quad (t-1)^2=\frac{1}{5}.

So,

t=1±15.t=1\pm \frac{1}{\sqrt5}.

Thus, the distances along PCPC are:

PA=(115)CP,PB=(1+15)CP.PA = (1-\frac{1}{\sqrt5})\cdot CP,\qquad PB = (1+\frac{1}{\sqrt5})\cdot CP.

The arithmetic mean is:

PA+PB2=(115+1+15)CP2=2CP2=CP.\frac{PA+PB}{2}=\frac{\left(1-\frac{1}{\sqrt5}+1+\frac{1}{\sqrt5}\right)CP}{2}=\frac{2CP}{2}=CP.

So (B) is true.

Step 5. Option (C): Area of PQR\triangle PQR

In PQR\triangle PQR the two tangents PQPQ and PRPR (each of length 4) make an angle θ\theta at PP with sinθ\sin\theta computed as

sinθ=2sinθ2cosθ2.\sin\theta=2\sin\frac{\theta}{2}\cos\frac{\theta}{2}.

Since

sinθ2=rCP=225=15,cosθ2=115=25,\sin\frac{\theta}{2}=\frac{r}{CP}=\frac{2}{2\sqrt5}=\frac{1}{\sqrt5},\quad \cos\frac{\theta}{2}=\sqrt{1-\frac{1}{5}}=\frac{2}{\sqrt5},

we have:

sinθ=21525=45.\sin\theta=2\cdot \frac{1}{\sqrt5}\cdot \frac{2}{\sqrt5}=\frac{4}{5}.

Thus the area is:

Area=12PQPRsinθ=124445=325.\text{Area}=\frac{1}{2}\cdot PQ\cdot PR\cdot \sin\theta= \frac{1}{2}\cdot 4\cdot 4\cdot \frac{4}{5}=\frac{32}{5}.

So (C) is true.

Step 6. Option (D): Equation of the circumcircle of PQR\triangle PQR

A well‐known result is that for the pair of tangents drawn from an external point PP to a circle, the circumcenter of PQR\triangle PQR is the midpoint of PCPC. We have:

P=(2,5),C=(4,9)Midpoint O=(2+42,5+92)=(3,7).P=(2,5),\quad C=(4,9)\quad\Longrightarrow\quad \text{Midpoint }O=\left(\frac{2+4}{2},\frac{5+9}{2}\right)=(3,7).

Distance OPOP is:

OP=(32)2+(75)2=1+4=5.OP=\sqrt{(3-2)^2+(7-5)^2}=\sqrt{1+4}=\sqrt5.

Thus the circumcircle of PQR\triangle PQR is

(x3)2+(y7)2=5,(x-3)^2+(y-7)^2=5,

which expands to:

x2+y26x14y+9+495=0x2+y26x14y+53=0.x^2+y^2-6x-14y+9+49-5=0 \quad\Longrightarrow\quad x^2+y^2-6x-14y+53=0.

So (D) is true.


Summary (Minimal Explanation)

  1. Centre & Radius: Completing the square gives C=(4,9)C=(4,9), r=2r=2.
  2. Tangents: CP=25CP=2\sqrt5 and tangent length =4=4. Using tanθ2=12\tan\frac{\theta}{2}=\frac{1}{2}, we get angle 2tan1(1/2)=tan1(4/3)2\tan^{-1}(1/2)=\tan^{-1}(4/3).
  3. Line PC intersections: Parameterizing shows that CPCP equals the arithmetic mean of PAPA and PBPB.
  4. Area: Using sinθ=45\sin\theta=\frac{4}{5} gives area 325\frac{32}{5}.
  5. Circumcircle: The circumcenter is the midpoint of PCPC i.e. (3,7)(3,7) and radius 5\sqrt5, leading to x2+y26x14y+53=0x^2+y^2-6x-14y+53=0.