Solveeit Logo

Question

Question: What volume (in ml) of 0.8 M $AlCl_3$ solution to get solution of chloride ion concentration equal t...

What volume (in ml) of 0.8 M AlCl3AlCl_3 solution to get solution of chloride ion concentration equal to 0.6 M ?

Answer

250 ml

Explanation

Solution

The question asks for a specific volume of a concentrated AlCl3AlCl_3 solution required to prepare a solution with a desired chloride ion concentration. To obtain a numerical answer for volume, we must assume a final target volume for the solution to be prepared. A standard assumption in such cases is to prepare 1 liter (1000 ml) of the final solution.

  1. Determine moles of chloride ions needed in the final solution: We want a final solution with a chloride ion concentration of 0.6 M. If we assume the final volume is 1 L (1000 ml): Moles of Cl needed=Molarity×Volume (in L)=0.6 mol/L×1 L=0.6 mol\text{Moles of } Cl^- \text{ needed} = \text{Molarity} \times \text{Volume (in L)} = 0.6 \text{ mol/L} \times 1 \text{ L} = 0.6 \text{ mol}

  2. Relate moles of chloride ions to moles of AlCl3AlCl_3: Aluminum chloride (AlCl3AlCl_3) dissociates in water as follows: AlCl3(aq)Al3+(aq)+3Cl(aq)AlCl_3 (aq) \rightarrow Al^{3+} (aq) + 3Cl^- (aq) This means 1 mole of AlCl3AlCl_3 produces 3 moles of ClCl^- ions. Therefore, to get 0.6 moles of ClCl^-, we need: Moles of AlCl3 required=Moles of Cl needed3=0.6 mol3=0.2 mol\text{Moles of } AlCl_3 \text{ required} = \frac{\text{Moles of } Cl^- \text{ needed}}{3} = \frac{0.6 \text{ mol}}{3} = 0.2 \text{ mol}

  3. Calculate the volume of the 0.8 M AlCl3AlCl_3 stock solution: We have a stock solution of 0.8 M AlCl3AlCl_3. To find the volume containing 0.2 moles of AlCl3AlCl_3: Volume of AlCl3 solution=Moles of AlCl3 requiredMolarity of AlCl3=0.2 mol0.8 mol/L=0.25 L\text{Volume of } AlCl_3 \text{ solution} = \frac{\text{Moles of } AlCl_3 \text{ required}}{\text{Molarity of } AlCl_3} = \frac{0.2 \text{ mol}}{0.8 \text{ mol/L}} = 0.25 \text{ L} Converting to milliliters: 0.25 L×1000 ml/L=250 ml0.25 \text{ L} \times 1000 \text{ ml/L} = 250 \text{ ml}