Solveeit Logo

Question

Question: Value of $\Lambda_m^\infty$ for $SrCl_2$ in water at $25^\circ$ from the following data: | Conc. (m...

Value of Λm\Lambda_m^\infty for SrCl2SrCl_2 in water at 2525^\circ from the following data:

Conc. (mol/L)0.251
Λm(Ω1cm2mol1)\Lambda_m (\Omega^{-1} cm^2 mol^{-1})260250
A

270

B

260

C

250

D

255

Answer

270

Explanation

Solution

The problem asks for the molar conductivity at infinite dilution (Λm\Lambda_m^\infty) for SrCl2SrCl_2 using the provided experimental data. SrCl2SrCl_2 is a strong electrolyte.

For strong electrolytes, the variation of molar conductivity (Λm\Lambda_m) with concentration (C) can be described by the Debye-Hückel-Onsager equation:

Λm=ΛmAC\Lambda_m = \Lambda_m^\infty - A\sqrt{C}

where:

Λm\Lambda_m is the molar conductivity at concentration C.

Λm\Lambda_m^\infty is the molar conductivity at infinite dilution.

A is a constant for a given solvent and temperature, specific to the type of electrolyte.

We are given two data points:

  1. When C = 0.25 mol/L, Λm=260Ω1cm2mol1\Lambda_m = 260 \, \Omega^{-1} cm^2 mol^{-1}
  2. When C = 1 mol/L, Λm=250Ω1cm2mol1\Lambda_m = 250 \, \Omega^{-1} cm^2 mol^{-1}

Let's set up two equations using the Debye-Hückel-Onsager equation:

For the first data point (C=0.25C = 0.25 mol/L):

C=0.25=0.5\sqrt{C} = \sqrt{0.25} = 0.5

260=ΛmA(0.5)260 = \Lambda_m^\infty - A(0.5) --- (1)

For the second data point (C=1C = 1 mol/L):

C=1=1\sqrt{C} = \sqrt{1} = 1

250=ΛmA(1)250 = \Lambda_m^\infty - A(1) --- (2)

Now we have a system of two linear equations with two unknowns (Λm\Lambda_m^\infty and A).

Subtract Equation (2) from Equation (1):

(260250)=(Λm0.5A)(ΛmA)(260 - 250) = (\Lambda_m^\infty - 0.5A) - (\Lambda_m^\infty - A)

10=Λm0.5AΛm+A10 = \Lambda_m^\infty - 0.5A - \Lambda_m^\infty + A

10=0.5A10 = 0.5A

A=100.5A = \frac{10}{0.5}

A=20A = 20

Now substitute the value of A back into Equation (2) to find Λm\Lambda_m^\infty:

250=ΛmA250 = \Lambda_m^\infty - A

250=Λm20250 = \Lambda_m^\infty - 20

Λm=250+20\Lambda_m^\infty = 250 + 20

Λm=270Ω1cm2mol1\Lambda_m^\infty = 270 \, \Omega^{-1} cm^2 mol^{-1}

Alternatively, using Equation (1):

260=Λm0.5A260 = \Lambda_m^\infty - 0.5A

260=Λm0.5(20)260 = \Lambda_m^\infty - 0.5(20)

260=Λm10260 = \Lambda_m^\infty - 10

Λm=260+10\Lambda_m^\infty = 260 + 10

Λm=270Ω1cm2mol1\Lambda_m^\infty = 270 \, \Omega^{-1} cm^2 mol^{-1}

Both methods yield the same result.

The value of Λm\Lambda_m^\infty for SrCl2SrCl_2 is 270Ω1cm2mol1270 \, \Omega^{-1} cm^2 mol^{-1}.