Solveeit Logo

Question

Question: Number of real solutions of the equation $\log_{10} \sqrt{\log_{10} |x|-x} = \log_{10} \sqrt{x^2}$ i...

Number of real solutions of the equation log10log10xx=log10x2\log_{10} \sqrt{\log_{10} |x|-x} = \log_{10} \sqrt{x^2} is:

A

zero

B

exactly 1

C

exactly 2

Answer

exactly 2

Explanation

Solution

The given equation is log10log10xx=log10x2\log_{10} \sqrt{\log_{10} |x|-x} = \log_{10} \sqrt{x^2}.

The domain requires:

  1. log10xx>0\log_{10} |x|-x > 0
  2. x2>0    x0x^2 > 0 \implies x \neq 0

Equating the arguments of the logarithm: log10xx=x2\sqrt{\log_{10} |x|-x} = \sqrt{x^2} log10xx=x2\log_{10} |x|-x = x^2 log10x=x2+x\log_{10} |x| = x^2 + x

Case 1: x>0x > 0 x=x|x| = x. The equation becomes log10x=x2+x\log_{10} x = x^2 + x. The domain condition is log10xx>0\log_{10} x - x > 0. Let k(x)=log10xxk(x) = \log_{10} x - x. k(x)=1xln101k'(x) = \frac{1}{x \ln 10} - 1. Setting k(x)=0k'(x)=0 gives x=1ln10x = \frac{1}{\ln 10}. The maximum value of k(x)k(x) is k(1ln10)=log10(1ln10)1ln10<0k(\frac{1}{\ln 10}) = \log_{10}(\frac{1}{\ln 10}) - \frac{1}{\ln 10} < 0. Thus, log10xx>0\log_{10} x - x > 0 is never satisfied for x>0x>0. No solutions in this case.

Case 2: x<0x < 0 x=x|x| = -x. Let y=xy = -x, so y>0y > 0. The equation becomes log10y=(y)2+(y)    log10y=y2y\log_{10} y = (-y)^2 + (-y) \implies \log_{10} y = y^2 - y. The domain condition becomes log10y(y)>0    log10y+y>0\log_{10} y - (-y) > 0 \implies \log_{10} y + y > 0.

We need to solve log10y=y2y\log_{10} y = y^2 - y for y>0y>0 and check log10y+y>0\log_{10} y + y > 0. Consider f(y)=y2ylog10yf(y) = y^2 - y - \log_{10} y. f(y)=2+1y2ln10>0f''(y) = 2 + \frac{1}{y^2 \ln 10} > 0 for y>0y>0, so f(y)f(y) is convex. f(1)=121log101=0f(1) = 1^2 - 1 - \log_{10} 1 = 0. So y=1y=1 is a solution. For y=1y=1, log101+1=1>0\log_{10} 1 + 1 = 1 > 0. So x=1x=-1 is a solution.

As y0+y \to 0^+, f(y)+f(y) \to +\infty. Since f(y)f(y) is convex and has a root at y=1y=1, and f(y)+f(y) \to +\infty as y0+y \to 0^+, there must be another root yroot2y_{root2} in (0,1)(0,1). For this root yroot2y_{root2}, we have log10yroot2=yroot22yroot2\log_{10} y_{root2} = y_{root2}^2 - y_{root2}. The domain condition is log10yroot2+yroot2=(yroot22yroot2)+yroot2=yroot22\log_{10} y_{root2} + y_{root2} = (y_{root2}^2 - y_{root2}) + y_{root2} = y_{root2}^2. Since yroot2>0y_{root2} > 0, yroot22>0y_{root2}^2 > 0. So the domain condition is satisfied. Thus, there are two solutions for yy: y=1y=1 and y=yroot2y=y_{root2}, which correspond to two solutions for xx: x=1x=-1 and x=yroot2x=-y_{root2}.

Therefore, there are exactly 2 real solutions.