Question
Question: $^nC_0$ $^{2n}C_n$ - $^nC_1$ $^{2n-1}C_n$ + $^nC_2$ $^{2n-2}C_n$ - $^nC_3$ $^{2n-3}C_n$ + ... + ... ...
nC0 2nCn - nC1 2n−1Cn + nC2 2n−2Cn - nC3 2n−3Cn + ... + ... + (−1)n nCn nCn =

0
1
n
2n
1
Solution
The given expression is a sum of products of binomial coefficients: S=∑k=0n(−1)k(kn)(n2n−k)
To evaluate this sum, we can use the generating function approach.
Recall that the binomial coefficient (rN) is the coefficient of xr in the expansion of (1+x)N. We denote this as [xr](1+x)N.
Using this property, we can write (n2n−k) as [xn](1+x)2n−k.
Substituting this into the sum:
S=∑k=0n(−1)k(kn)[xn](1+x)2n−k
Since the coefficient operator [xn] acts linearly, we can move it outside the summation:
S=[xn]∑k=0n(−1)k(kn)(1+x)2n−k
Now, we can factor out (1+x)2n from the sum:
S=[xn](1+x)2n∑k=0n(−1)k(kn)(1+x)−k
S=[xn](1+x)2n∑k=0n(kn)(−1+x1)k
The summation part is a binomial expansion of the form ∑k=0n(kn)akbn−k=(b+a)n.
Here, a=−1+x1 and b=1. So, the sum is (1−1+x1)n.
S=[xn](1+x)2n(1+x1+x−1)n
S=[xn](1+x)2n(1+xx)n
S=[xn](1+x)2n(1+x)nxn
S=[xn]xn(1+x)2n−n
S=[xn]xn(1+x)n
To find the coefficient of xn in xn(1+x)n, we can expand (1+x)n:
xn(1+x)n=xn∑j=0n(jn)xj=∑j=0n(jn)xn+j
We are looking for the term where the power of x is n. This occurs when n+j=n, which implies j=0.
The coefficient corresponding to j=0 is (0n).
Since (0n)=1, the sum S is equal to 1.
This result can also be confirmed by a known combinatorial identity:
∑k=0n(−1)k(kn)(rm−k)=(r−nm−n).
In our problem, m=2n and r=n.
Substituting these values:
S=(n−n2n−n)=(0n)=1.